
1

Interval Analysis and Machine Arithmetic: Why Signedness
Ignorance Is Bliss

GRAEME GANGE, JORGE A. NAVAS, PETER SCHACHTE, HARALD SØNDERGAARD,
and PETER J. STUCKEY, The University of Melbourne, Australia

The most commonly used integer types have fixed bit-width, making it possible for computations to “wrap
around,” and many programs depend on this behaviour. Yet much work to date on program analysis and
verification of integer computations treats integers as having infinite precision, and most analyses that do
respect fixed width lose precision when overflow is possible. We present a novel integer interval abstract
domain that correctly handles wrap-around. The analysis is signedness agnostic. By treating integers as
strings of bits, only considering signedness for operations that treat them differently, we produce precise,
correct results at a modest cost in execution time.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers; opti-
mization; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs—Assertions; invariants; logics of programs; mechanical verification; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program analysis; G.1.0 [Numerical Analysis]:
General—Computer arithmetic

General Terms: Algorithms, Languages, Reliability, Theory, Verification

Additional Key Words and Phrases: Abstract interpretation, interval analysis, LLVM, machine arithmetic,
modular arithmetic, overflow, program analysis

ACM Reference Format:
Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2015. Interval
analysis and machine arithmetic: Why signedness ignorance is bliss. ACM Trans. Program. Lang. Syst. 37,
1, Article 1 (January 2015), 35 pages.
DOI: http://dx.doi.org/10.1145/2651360

1. INTRODUCTION

Most programming languages provide one or more fixed-width integer types. For main-
stream languages, these are by far the most widely used integer types. Arithmetic
operations on these types do not have the usual integer semantics; instead, they obey
laws of modular arithmetic. The results of all fixed-width integer operations, including
intermediate operations, are truncated to the bit width of the integer type involved.
Failing to account for this can easily lead to incorrect results. For example, if signed
w-bit integers a and b are known to be nonnegative, it does not follow that their sum
is, since signed fixed-width addition of positive integers can “wrap around” to produce
a negative result.

This work is supported by the Australian Research Council, under ARC grant DP110102579.
Authors’ addresses: J. A. Navas, NASA Ames Research Center, Moffett Field, CA 94035; email: jorge.a.
navaslaserna@nasa.gov; G. Gange, P. Schachte, H. Søndergaard, and P. J. Stuckey, Department of Computing
and Information Systems, The University of Melbourne, Vic. 3010, Australia; email: {gkgange, schachte,
harald, pstuckey}@unimelb.edu.au.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
2015 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 0164-0925/2015/01-ART1 $15.00
DOI: http://dx.doi.org/10.1145/2651360

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

http://dx.doi.org/10.1145/2651360
file:jorge.a.navaslaserna@nasa.gov
file:jorge.a.navaslaserna@nasa.gov
file:gkgange,schachte,harald,pstuckey@unimelb.edu.au
file:gkgange,schachte,harald,pstuckey@unimelb.edu.au
http://dx.doi.org/10.1145/2651360

1:2 G. Gange et al.

Any program analysis seeking to accurately reflect the behavior of fixed-width integer
arithmetic must account for the fact that overflow and underflow may lead to incorrect
results. In this article, we shall consider analyses to determine upper and lower bounds
for integer variables, so-called interval analysis. Most work on interval analysis, for
example, Su and Wagner [2004], Leroux and Sutre [2007], Gawlitza et al. [2009], and
Rodrigues et al. [2013], have ignored this issue of overflow, treating program integers
as unbounded, mathematical integers. In a fixed-precision context, this can lead to
unsound analysis results. Consider, for example, this program fragment:

int i = 1;
while (*) {

i = i+1;
}
assert(i>0);

A verification tool based on mathematical integers will conclude (regardless of the
condition controlling the loop) that the assertion must hold: a value starting at one
remains positive no matter how many times it is incremented. However, this does not
reflect the actual behavior of fixed-width arithmetic.

This defect is easily corrected by representing the bounds on fixed bit-width integer
variables with fixed bit-width values, and correcting the abstract operations to respect
those bit-widths. While this avoids incorrect conclusions, however, the precision of such
a domain is disappointing. Take the case of a computation z = x + y where x, y, and
z are unsigned 4-bit variables,1 x is known to lie in the interval [1100, 1101] and y is
confined to the interval [0010, 0011]: that is, 12 ≤ x ≤ 13 and 2 ≤ y ≤ 3. Treating these
as intervals on Z, we would expect 14 ≤ z ≤ 16, however, 16 is not expressible as a 4-bit
integer. Thus z could lie in the interval [1110, 1111], or it could overflow to give 0000,
so the correct interval for z is [0000, 1111]. That is, all precision is lost.

Ironically, if we treated the same bit patterns as signed numbers, we would not lose
precision. The reader should pause to consider this, bearing in mind that x, y, and
z really are unsigned in our example. In the signed interpretation, x ∈ [1100, 1101]
means −4 ≤ x ≤ −3, so we can conclude that z ∈ [1110, 0000]. The same bit patterns
do not indicate an overflow for signed integers, thus we do not lose precision here. As
long as we treat [1110, 0000] as a set of bit patterns rather than a set of integers, we
can remain indifferent to the signedness of the actual values.

The same effect can arise when we treat signed integers as unsigned. If we know
x ∈ [0100, 0101] and y ∈ [0010, 0011], where both values are treated as signed, then
we conclude that z ∈ [1000, 0111] = [−8, 7], and again we lose all precision. However,
if the values are treated as unsigned, we obtain the precise result z ∈ [0110, 1000].

Thus, perhaps surprisingly, we obtain better precision by ignoring any signedness
information about the numbers being manipulated, instead treating them as just bit
patterns. Virtue becomes necessity when we wish to analyse low-level code, such as
machine code or LLVM code. LLVM is rapidly gaining popularity as a target for compil-
ers for a range of programming languages. As a result, the literature on static analysis
of LLVM code is growing [Falke et al. 2012, 2013; Sen and Srikant 2007; Teixera and
Pereira 2011; Zhang et al. 2010, 2011]. LLVM Intermediate Representation (IR) care-
fully specifies the bit width of all integer values, but does not specify whether they are
signed or unsigned. Because for most operations two’s complement arithmetic (treating
the inputs as signed numbers) produces the same bit vectors as unsigned arithmetic,
LLVM IR always omits signedness information except for operations that must behave

1We use 4-bit examples and binary notation to make examples more manageable.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:3

differently for signed and unsigned numbers, such as comparisons. In general, it is
not possible to determine from LLVM code which values originated as signed variables
in the source program and which originated as unsigned. An analysis for LLVM code
benefits all compilers that target LLVM code as their back end; it is fortuitous that
signedness information is not needed to infer precise intervals.

The literature on program analysis is vast, and one may wonder how our approach
differs from methods that use similar-looking abstract domains, or methods based on
other ideas, such as constraint propagation or bit-blasting. We discuss this in Section 9
following presentation of our method and the sense in which it is “signedness agnostic.”
For now, suffice it to say that our aim has been to develop a static program analysis that
maintains the advantages of classical interval analysis, namely speed and scalability,
while working correctly and showing better precision in the fixed-width integer context
compared to simpler “overflow aware” approaches. Alternative methods for reasoning
about integer bounds tend to sacrifice speed, precision, and/or scalability in the face of
real-world programs, especially when these involve nonlinear arithmetic.

The contributions of this article are as follows:

—We adapt the classical integer interval analysis domain to correctly handle fixed-
width integer arithmetic without undue loss of precision. The key idea of this domain,
which we call “wrapped intervals,” is that correctness and precision of analysis can
be obtained by letting abstract operations deal with states that are superpositions of
signed and unsigned states.

—As an abstract domain, wrapped intervals do not form a lattice. We investigate the
ramifications of this and provide remedies for undesirable consequences. In partic-
ular, we show how to generalize a binary upper-bound operator to one that finds a
minimal upper bound for a set of intervals, without undue precision loss.

—We motivate and provide detailed algorithms for all aspects of the analysis, including
so-called widening. Our widening approach is new and is based on the idea of, roughly,
doubling the size of an interval in each widening step.

—We establish various results about relations with similar-looking abstract domains,
including the fact that the proposed abstract domain is incomparable with (reduced
products of) previously proposed value domains.

—We evaluate the resulting analysis on a suite of SPEC CPU 2000 benchmarks and
show that it provides higher precision than the classical integer interval analysis for
a moderate added cost.

We assume the reader is familiar with basic lattice theory and concepts from the
field of abstract interpretation, including Moore families, reduced products of abstract
domains, widening, and narrowing [Cousot and Cousot 1977, 1979, 1992].

The remainder of this article is organized as follows. Section 2 reviews the classical
integer interval analysis domain. Section 3 introduces wrapped intervals formally, and
discusses their use in contexts in which it is not known whether values are signed or
unsigned. In Section 4, the abstract domain of wrapped intervals is compared to related
reduced-product domains. Section 5 deals with termination and acceleration of the
analysis. Section 6 presents the results of experiments and gives an evaluation of cost
and benefits. Section 7 employs the domain to reduce the amount of instrumentation
code necessary to detect runtime overflows and underflows in C programs, and Section 8
discusses further potential applications. Section 9 discusses previous work to adapt
interval analysis to fixed precision integers. Section 10 describes future work and
presents conclusions. A preliminary version of this article appeared as Navas et al.
[2012].

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:4 G. Gange et al.

Fig. 1. The classical integer interval domain I.

2. BASIC INTEGER INTERVAL ANALYSES

The goal of interval analysis is to determine an approximation of the sets of possible
values that may be stored in integer-valued variables at various points in a computa-
tion. To keep this tractable, interval analysis approximates such a set using only its
smallest and largest possible values, taking the specified set to be all integers between
those bounds.

2.1. The Classical Integer Interval Domain

Interval analysis is well understood [Nielson et al. 1999; Seidl et al. 2012]. The classical
interval lattice I is shown in Figure 1. Apart from the element ⊥, which denotes the
empty interval, the elements are of the form [x, y], where x ranges over Z ∪ {−∞}, y
ranges over Z ∪ {∞}, and x ≤ y. (Here, ≤ is the natural extension of ≤ on Z, that is,
−∞ ≤ x ≤ ∞ for all x ∈ Z ∪ {−∞,∞}.) The ordering � of such intervals is obvious,
albeit slightly cumbersome to express. Let us define

lo(z) =
{ ∞ if z = ⊥

x if z = [x, y] hi(z) =
{ −∞ if z = ⊥

y if z = [x, y] .

Then we can define z � z′ iff lo(z′) ≤ lo(z) ∧ hi(z) ≤ hi(z′). For the join we have:

z
 z′ =
{ ⊥ if z = z′ = ⊥

[min(lo(z), lo(z′)), max(hi(z), hi(z′))] otherwise.

For the meet, additional care is needed:

z � z′ =
{ ⊥ if z = ⊥ or z′ = ⊥

⊥ if disjoint (z, z′)
[max(lo(z), lo(z′)), min(hi(z), hi(z′))] otherwise,

where disjoint([x, y], [x′, y′]) holds iff y < x′ ∨ y′ < x.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:5

Of central interest in this article is the handling of arithmetic operations in wrapped
integer interval analysis. As a reference point, we conclude this section with the well-
known definitions of the abstract versions of the arithmetic operators + and ×. Abstract
addition is defined:

z + z′ =
{ ⊥ if z = ⊥ or z′ = ⊥

[lo(z) + lo(z′), hi(z) + hi(z′)] otherwise,

where the + on the right-hand side is addition extended to Z ∪ {−∞,∞}. Abstract
multiplication is defined:

z × z′ =

⎧⎪⎨⎪⎩
⊥ if z = ⊥

or z′ = ⊥
[min(S), max(S)] where
S = {lo(z) × lo(z′), lo(z) × hi(z′), hi(z) × lo(z′), hi(z) × hi(z′)} otherwise.

For example, to calculate [−4, 2]× [3, 5], one considers the combinations −4×3, −4×5,
2×3, and 2×5 and identifies the minimum and maximum values. This yields [−4, 2]×
[3, 5] = [−20, 10]. Note carefully the central role played by the functions min and max
in this definition.

As is clear from Figure 1, the classical interval domain has infinite ascending chains.
Implementations of interval analysis invariably include widening [Nielson et al. 1999]
to accelerate or ensure termination of the analysis.

2.2. Fixed-Precision Integer Intervals

Adapting the classical interval analysis to the fixed-precision case is not difficult. For
an interval analysis over the unsigned integers modulo m we define abstract domain
Iu

m. The elements of this domain are ⊥ (for the empty interval) together with the set
of delimited intervals, {[a, b] | 0 ≤ a ≤ b < m}. For the signed domain Is

m, the elements
are ⊥ and the delimited intervals {[a, b] |
−m

2 � ≤ a ≤ b < m
2 }. For a picture of Is

m,
simply replace, in Figure 1, each lower-bound −∞ by
−m

2 � and each upper-bound ∞ by

m

2 � − 1. To picture Iu
m, first remove all intervals with negative lower bounds, and then

replace ∞ by m− 1. For the lattice operations, perform the same substitutions—these
definitions are unchanged otherwise. For the arithmetic operations, we now need to pay
attention to the possibility of overflow. For Iu

m, we can conservatively define addition as
follows:

z + z′ =
{ ⊥ if z = ⊥ or z′ = ⊥

[lo(z) + lo(z′), hi(z) + hi(z′)] if hi(z) + hi(z′) < m
[0, m− 1] otherwise,

where the + is normal integer addition. In a similar manner, we can define the opera-
tions for signed analysis, taking both under- and overflow into account.

Because our interest is in faithfully analyzing programs that manipulate (signed or
unsigned) native machine integers, we will largely focus on Is

2w and Iu
2w , where w is a

common integer bit-width.

3. WRAPPED INTEGER INTERVAL ANALYSIS

To accurately capture the behavior of fixed bit-width arithmetic, we must limit the
concrete domain to the values representable by the types used in the program, and
correct the implementation of the abstract operations to reflect the actual behavior
of the concrete operations [Simon and King 2007]. As we have seen, a commitment
to ordinary ordered intervals [x, y] (either signed or unsigned), when wraparound is
possible, can lead to severe loss of precision.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:6 G. Gange et al.

Fig. 2. Three different ways to cut the number circle open.

This suggests that it is better to treat the bounds of an interval as a superposition of
signed and unsigned values, allowing the accommodation of both signed and unsigned
wraparound. That is, we treat each bound as merely a bit pattern, considering its
signedness only when necessary for the operation involved (such as comparison). We
therefore describe the domain as signedness-agnostic. We treat each interval as the
set of bit patterns beginning with the first bound and obtainable by incrementing this
value until the second bound is reached. Not knowing whether these bit patterns are
signed or unsigned, we cannot say which is the lower and which is the upper bound.

Instead of representing bounds over fixed bit-width integer types as a single range of
values on the number line, we handle them as a range of values on a number circle (see
Figure 2), or, in the n-dimensional case, as a closed convex region of an n-dimensional
torus. The unsigned numbers begin with 0 near the “south pole,” proceeding clockwise
to the maximum value back near the south pole. The signed numbers begin with the
smallest number near the “north pole,” proceeding clockwise through 0, back to the
largest signed number near the north pole.

“Wrapped” intervals are permitted to cross either (or both) poles. Letting an interval
start and end anywhere has several advantages:

—It allows for a limited and special type of disjunctive interval information. For ex-
ample, an interval x ∈ [0111, 1001] means 7 ≤ x ≤ 9 if x is treated as unsigned, and
x = 7 ∨ −8 ≤ x ≤ −7 if it is treated as signed.

—Wrapped intervals are closed under complement: For a wrapped interval t, we can
express x �∈ t just as readily as x ∈ t. For example, in the analysis of if (x == 0)
s1 else s2, we can express x’s latitude in each of s1 and s2 exactly (namely, x ∈
[0000, 0000] in case of s1, and x ∈ [0001, 1111] in case of s2).

—Wrapped interval arithmetic better reflects algebraic properties of the underlying
arithmetic operations than intervals without wrapping, even if signedness informa-
tion is available. Consider, for example, the computation x + y − z. If we know x, y,
and z are all signed 4-bit integers in the interval [0011, 0101], then we determine
y − z ∈ [1110, 0010], whether using wrapped intervals or not. But wrapped intervals
will also capture that x + y ∈ [0110, 1010], while an unwrapped fixed-width interval
analysis would see that this sum could be as large as the largest value 0111 and as
small as the smallest 1000, so would derive no useful bounds. Therefore, wrapped
intervals derive the correct bounds [0001, 0111] for both (x + y) − z and x + (y − z).

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:7

The use of ordinary (unwrapped) intervals, on the other hand, can only derive these
bounds for x + (y − z), finding no useful information for (x + y) − z, although wrap-
ping is not necessary to represent the final result. This ability to allow intermediate
results to wrap around is a powerful advantage of wrapped intervals, even in cases
where signedness information is available and final results do not require wrapping.

All up, this small broadening of the ordinary interval domain allows precise analysis
of code where signedness information is unavailable. Equally important, it can provide
increased precision even where all signedness information is provided.

As we shall see, the advantages of wrapped intervals do come at a price. The domain
of wrapped intervals does not form a lattice; the consequence is the need for a great deal
of care in an implementation. In this article, we provide all the necessary details for an
efficient implementation and show that the greater craft required in implementation
does not translate into algorithms that are substantially slower than those used in
classical interval analysis.

3.1. Wrapped Intervals, Formally

We use Bw to denote the set of all bit-vectors of size w. We will use sequence notation to
construct bit-vectors: bk, where b ∈ {0, 1}, represents k copies of bit b in a row, and s1s2
represents the concatenation of two bit-vectors s1 and s2. For example, 01403 represents
01111000.

We shall apply the usual arithmetic operators, with their usual meanings, to bit-
vectors. That is, unadorned arithmetic operators treat bit-vectors identically to their
unsigned integer equivalents. Operators subscripted by a number suggest modular
arithmetic; more precisely, a +n b = (a + b) mod 2n, and similarly for other operators.

We use ≤ for the usual lexicographic ordering of Bw. For example, 0011 ≤ 1001. In
the context of wrapped intervals, a relative ordering is more useful than an absolute
one. We define

b ≤a c iff b −w a ≤ c −w a.

Intuitively, this says that starting from point a on the number circle and travelling
clockwise, b is encountered no later than c. It also means that if the number circle were
rotated to put a at the south pole (the zero point), then b would be lexicographically no
larger than c.

Naturally, ≤0 coincides with ≤, and reflects the normal behavior of <= on unsigned
w-bit integers. Similarly, ≤2w−1 reflects the normal behavior of <= on signed w-bit
integers. When their arguments are restricted to a single hemisphere (see Figure 2),
these orderings coincide, but ≤0 and ≤2w−1 do not agree across hemispheres.

We view the fixed-width integers we operate on as actually bit-vectors, completely
free of signedness information. This accords exactly with how LLVM and assembly
languages view integers. However, for convenience, when operations on bit-vectors
will be independent of the interpretation, we may sometimes use integers (by default
unsigned) to represent bit-vectors. This is just a matter of convenience: by slight exten-
sion it allows us to use congruence relations and other modular-arithmetic concepts to
express bit-vector relations that are otherwise cumbersome to express. The following
definition is a good example.

Definition 3.1. A wrapped interval, or w-interval, is either an empty interval, denoted
⊥, a full interval, denoted �, or a delimited interval �x, y�, where x, y are w-width bit-
vectors and x �= y +w 1.2

2The condition, which is independent of signed/unsigned interpretation, avoids duplicate names (such as
�0011, 0010� and �1100, 1011�) for the full interval.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:8 G. Gange et al.

Let W2w be the set of w-intervals over width w bit-vectors. The meaning of a w-interval
is given by the function γ : W2w → P(Bw):

γ (⊥) = ∅

γ �x, y� =
{ {x, . . . , y} if x ≤ y

{0w, . . . , y} ∪ {x, . . . , 1w} otherwise.

γ (�) = Bw

For example,

γ �1111, 1001� = {1111, 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001}
represents the signed integers [−1, 7] ∪ {−8,−7} or the unsigned integers [0, 9] ∪ {15}.
The cardinality of a w-interval is therefore:

#(⊥) = 0

#�x, y� = (y −w x +w 1)

#(�) = 2w.

In an abuse of notation, we define e ∈ u iff e ∈ γ (u). Note that W2w is complemented.
We define the complement of a w-interval:

⊥ = �
� = ⊥
�x, y� = �y +w 1, x −w 1�

3.2. Ordering Wrapped Intervals

We order W2w by inclusion: t1 ⊆ t2 iff γ (t1) ⊆ γ (t2). It is easy to see that ⊆ is a partial
ordering on W2w ; the set is a finite partial order with least element ⊥ and greatest
element �.

We now define membership testing and inclusion for wrapped intervals. For mem-
bership testing:

e ∈ u ≡ u = � ∨ (u = �x, y� ∧ e ≤x y).
Inclusion is defined in terms of membership: either the intervals are identical or else
both endpoints of s are in t and at least one endpoint of t is outside s.

s ⊆ t =
{ true if s = ⊥ ∨ t = � ∨ s = t

false if s = � ∨ t = ⊥
a ∈ t ∧ b ∈ t ∧ (c �∈ s ∨ d �∈ s) if s = �a, b�, t = �c, d�.

In guarded definitions like this, the clause that applies is the first (from the top) whose
guard is satisfied; that is, an “if” clause should be read as “else if.”

Consider the cases of possible overlap between two w-intervals shown in Figure 3.
Only Case (a) depicts containment, but Case (b) shows a situation in which each w-
interval has its bounds contained in the other. This explains why the third case in the
definition of ⊆ requires that c �∈ s or d �∈ s.

While (W2w ,⊆) is partially ordered, it is not a lattice. For example, consider the
w-intervals �0100, 1000� and �1100, 0000�. Two minimal upper bounds are the incom-
parable �0100, 0000� and �1100, 1000�, two sets of the same cardinality. Thus, a join
operation is not available; by duality, neither is a meet operation.

In fact, the domain of wrapped intervals is not a Moore family, that is, it is not closed
under conjunction. For example,

γ �1000, 0000� ∩ γ �0000, 1000� = {0000, 1000},

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:9

Fig. 3. Four cases of relative position of two w-intervals.

a set that does not correspond to a w-interval. Furthermore, the two w-intervals
�1000, 0000� and �0000, 1000� are minimal candidates describing the set {0000, 1000}
equally well. In other words, there is no unique best abstraction of {0000, 1000}.

The obvious response to the lack of a join is to seek an “over-join” operation
̃ that
selects, from the set of possible resulting w-intervals, the one with smallest cardi-
nality. In the case of a tie, any convenient mechanism can be used to select a single
result.

3.3. Biased Over- and Under-Approximation of Bounds

Since W2w is not a lattice, it does not have meet and join operations. However, it is useful
to define the best approximations of meet and join that we can create. In fact, there are
two sensible approximations of each, depending on whether we need an under- or over-
approximation: over-meet �̃ and over-join
̃ produce over-approximations, and under-
meet �˜ and under-join
˜ produce under-approximations. These are best understood in
terms of the semantic function γ :

γ (s
̃ t) ⊇ γ (s) ∪ γ (t), minimizing #(s
̃ t)
γ (s �˜ t) ⊆ γ (s) ∩ γ (t), maximizing #(s �˜ t)

γ (s
˜ t) ⊆ γ (s) ∪ γ (t), maximizing #(s
˜ t)

γ (s �̃ t) ⊇ γ (s) ∩ γ (t), minimizing #(s �̃ t)

In particular, note that
̃ produces a minimal upper bound and �˜ produces a maximal
lower bound. For the analysis presented in this article, only
̃ and �̃ turn out to be
useful. However,
˜ and �˜ would be needed for other analyses, for example, a backward
analysis to determine the bounds on arguments to a function that would ensure that
calls to the function can complete without an index out-of-bounds error. Thus it is worth
presenting all four operations.

All four use cardinality to choose among candidate results. To resolve ties, we ar-
bitrarily choose the interval with the lexicographically smallest left component; thus
these are biased algorithms. We use duality to simplify the presentation, shown in
Figure 4. In the definition of
̃, the first two cases handle � and ⊥, as well as Fig-
ure 3(a); the third case handles Figure 3(b); the fourth and fifth cases handle Fig-
ure 3(c); and the final two cases handle Figure 3(d). Conversely, in the definition of
�̃, the first two cases handle � and ⊥, as well as Figure 3(a); the third case handles
Figure 3(d); the fourth and fifth cases handle Figure 3(c); and the final two cases handle
Figure 3(b).

All these operations have important shortcomings. First, they are not associative;
in fact, different ways of associating the operands may yield results with different
cardinalities. For example, if x = �0010, 0110�, y = �1000, 1010�, and z = �1110, 0000�,
then (x
̃ y)
̃ z = �1110, 1010� has smaller cardinality than x
̃ (y
̃ z) = �0010, 0000�.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:10 G. Gange et al.

Fig. 4. Over- and under-approximations of extreme bounds.

Second, none of these operations is monotone. For example, we have �1111, 0000� ≤
�1110, 0000� and �0110, 1000�
̃ �1111, 0000� = �1111, 1000�. But owing to the left
bias, �0110, 1000�
̃ �1110, 0000� = �0110, 0000�. As we do not have �1111, 1000� ≤
�0110, 0000�,
̃ is not monotone. We discuss the ramifications of this in Section 5,
together with a workaround.

Lack of associativity means we cannot define generalized (variadic)
⊔̃

,
�
˜ ,

⊔

˜ , and
�̃

operations by simply folding the corresponding binary operation over a collection of w-
intervals, as we are accustomed to doing for lattice domains. These operations should be
carefully defined to produce the smallest w-interval containing all the given w-intervals,
the largest w-interval contained in each of the given w-intervals, the largest w-interval
contained in the union of all the given w-intervals, and the smallest w-interval contain-
ing the intersection of all the given w-intervals, respectively. The necessary specialized
algorithms are worthwhile, because it is not uncommon to use repeated joins in program
analysis, for example, when analyzing a basic block with more than two predecessor
blocks. Using repeated binary joins in such cases will sometimes give weaker results
than the generalized approximate least upper bound or greatest lower bound operation
[Gange et al. 2013a].

Figure 5 presents an algorithm for computing
⊔̃

S. Intuitively, the algorithm returns
the complement of the largest uncovered gap among intervals from S. It identifies
this gap by passing through S once, picking intervals lexicographically by their left
bounds. However, care must be taken to ensure that any apparent gaps, which are in
fact covered by w-intervals that cross the south pole and may only be found later in the
iteration, are not mistaken for actual gaps. We define the gap between two w-intervals
as empty if they overlap, or otherwise the clockwise distance from the end of the first
to the start of the second:

gap(s, t) =
{�c, b� if s = �a, b� ∧ t = �c, d� ∧ b �∈ t ∧ c �∈ s

⊥ otherwise.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:11

Fig. 5. Finding a minimal upper bound of a set of w-intervals.

The operation extend (s, t) produces the w-interval that runs from the start of s to the
end of t, ensuring that it includes all of s and t:

extend(s, t) =

⎧⎪⎨⎪⎩
t if s ⊆ t
s if t ⊆ s
� if s ⊆ t
�a, d� otherwise, where s = �a, b�, t = �c, d�.

The operation bigger (s, t) is defined:

bigger(s, t) =
{

t if # t > # s
s otherwise.

The two loops in Figure 5 traverse the set of w-intervals in order of lexicographically
increasing left bound; it does not matter where � and ⊥ appear in this sequence. The
first loop assigns to f the least upper bound of all w-intervals that cross the south pole.
The invariant for the second loop is that g is the largest uncovered gap in f ; thus the
loop can be terminated as soon as f = �. When the loop terminates, all w-intervals
have been incorporated in f , so f is an uncovered gap, and g is the largest uncovered
gap in f . The result is the complement of the bigger of g and f .

Consider Figure 5 (upper right) as an example. Here, no intervals cross the south
pole: at the start of the second loop, f = g = ⊥, and at the end of the loop, g is the gap
between a and b, and f is the interval clockwise from the start of a to the right end of
c. Since the complement of f is larger than g, the result in this case is f : the interval
from the start of a to the end of c.

For the lower right example of Figure 5, interval d does cross the south pole, thus
at the start of the second loop, f = d and g = ⊥. Now in the second loop, f extends
clockwise to encompass b and c, and finally also d, at which point f becomes �. But
because the loop starts with f = d, g never holds the gap between a and b; finally,
it holds the gap between the end of c and the start of d. Now the complement of f is
smaller than g: the final result is the complement of g, that is, the interval from the
start (right end) of d to the end of c.

The
⊔̃

operation is useful because it may preserve information that would be lost by
repeated use of the over-join. Thus it should always be used when multiple w-intervals
must be joined together, such as in the implementation of multiplication proposed in
Section 3.4. In fact, a general strategy for improving the precision of analysis is to

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:12 G. Gange et al.

Fig. 6. Finding a maximal under-approximation of a union of w-intervals.

delay the application of over-joins until all the w-intervals to be joined have become
available. Such delays allow multiple uses of
̃ to be replaced by a single use of

⊔̃
.

While the over-lub of a set of w-intervals S is a smallest w-interval that covers all
elements of S, the generalized under-lub

⊔

˜ S is a largest w-interval that is entirely

covered by elements of S. That is, every value covered by
⊔

˜ S is covered by some

element of S. An algorithm for
⊔

˜ S is given in Figure 6.

Like
⊔̃

S noted previously, this algorithm works by scanning the intervals in S in
order of increasing left bound. We keep track of the first contiguous interval f0, the
current interval f, and the largest contiguous interval so far p. After we have processed
all the intervals, it is possible that the last interval overlaps with the first; if this is
the case, we combine the final f with f0. The largest interval must then be either f
or p. We make use of the predicate overlap(s, t), which checks whether there is no gap
between the end of s and the beginning of t:

overlap(s, t) ≡ (s = �) ∨ (t = �) ∨ (s = �a, b� ∧ t = �c, d� ∧ c ≤a b).

Consider Figure 6 (upper right). We start with f0 = a and begin scanning from the
south pole. As there is no overlap between f0 and b, the first while loop terminates,
and we start the second with f0 = f = p = a. After the first iteration, f0 = p = a, f = b;
after the second and final iteration, f0 = a, p = b, f = d. Finally, as f overlaps with
f0, we expand f to encompass a and d. However, as p is still larger than f , we have⊔

˜ {a, b, d} = b.

In the case of Figure 6 (lower right), we have the additional interval c. The algorithm
proceeds exactly as before until the second iteration of the second while loop, where we
encounter c. After this, f0 = a, p = b, f = c. After the third and final iteration, because
c and d overlap, f0 = a, p = b, f = extend(c, d). We then combine f with f0 as before;
thus we have p covering b, and f covering a, c, and d. As f is larger than p, we find⊔

˜ {a, b, c, d} to be the interval from the beginning of c to the end of a.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:13

Finally, the algorithms for
�̃

and
�
˜ can easily be defined by duality using the

⊔̃
and

⊔

˜ operations presented earlier:

�̃
S =

⊔

˜{s | s ∈ S}
�
˜ S =

⊔̃
{s | s ∈ S}.

The intersection of two w-intervals returns one or two w-intervals, and gives the exact
intersection, in the sense that

⋃{γ (u)|u ∈ s ∩ t} = γ (s) ∩ γ (t).

s ∩ t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if s = ⊥ or t = ⊥
{t} if s = t ∨ s = �
{s} if t = �
{�a, d�, �c, b�} if s = �a, b� ∧ t = �c, d� ∧ a ∈ t ∧ b ∈ t ∧ c ∈ s ∧ d ∈ s
{s} if s = �a, b� ∧ t = �c, d� ∧ a ∈ t ∧ b ∈ t
{t} if s = �a, b� ∧ t = �c, d� ∧ c ∈ s ∧ d ∈ s
{�a, d�} if s = �a, b� ∧ t = �c, d� ∧ a ∈ t ∧ d ∈ s ∧ b �∈ t ∧ c �∈ s
{�c, b�} if s = �a, b� ∧ t = �c, d� ∧ b ∈ t ∧ c ∈ s ∧ a �∈ t ∧ d �∈ s
∅ otherwise.

Finally, we define interval difference:

s \ t = s �̃ t.

3.4. Analyzing Arithmetic Expressions

Addition and subtraction of w-intervals are defined as follows:

s + t =
{ ⊥ if s = ⊥ or t = ⊥

�a +w c, b +w d� if s = �a, b�, t = �c, d�, and # s + # t ≤ 2w

� otherwise

s − t =
{ ⊥ if s = ⊥ or t = ⊥

�a −w d, b −w c� if s = �a, b�, t = �c, d�, and # s + # t ≤ 2w

� otherwise.

Here, to detect a possible overflow when adding the two cardinalities, standard addition
is used. Note that +w and −w are signedness-agnostic: treating operands as signed
or unsigned makes no difference. Multiplication on w-intervals is more cumbersome,
even when we settle for a less-than-optimal solution. The reason is that even though
unsigned and signed multiplication are the same operations on bit-vectors, signed and
unsigned interval multiplication retain different information. The solution requires
separating each interval at the north and south poles, so that the segments agree
on ordering for both signed and unsigned interpretations, and then performing both
signed and unsigned multiplication on the fragments.

It is convenient to have names for the smallest w-intervals that straddle the poles.
Define the north pole interval np = �01w−1, 10w−1� and the south pole interval sp =
�1w, 0w�. Define the north and south pole splits of a delimited w-interval as follows:

nsplit(s) =

⎧⎪⎨⎪⎩
∅ if s = ⊥
{�a, b�} if s = �a, b� and np �⊆ �a, b�
{�a, 01w−1�, �10w−1, b�} if s = �a, b� and np ⊆ �a, b�
{�0w, 01w−1�, �10w−1, 1w�} if s = �

ssplit(s) =

⎧⎪⎨⎪⎩
∅ if s = ⊥
{�a, b�} if s = �a, b� and sp �⊆ �a, b�
{�a, 1w�, �0w, b�} if s = �a, b� and sp ⊆ �a, b�
{�10w−1, 1w�, �0w, 01w−1�} if s = �.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:14 G. Gange et al.

Fig. 7. The two intervals from Example 3.2 to be multiplied.

Then let the sphere cut be

cut(u) =
⋃

{ssplit(v) | v ∈ nsplit(u)}.
For example, cut(�1111, 1001�) = {�1111, 1111�, �0000, 0111�, �1000, 1001�}.

Unsigned ×u and signed ×s multiplication of two delimited w-intervals �a, b� and
�c, d� that do not straddle poles are straightforward:

�a, b� ×u �c, d� =
{ �a ×w c, b ×w d� if b × d − a × c < 2w

� otherwise.

And, letting msb be the function that extracts the most significant bit from its
argument:

�a, b� ×s �c, d� =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�a ×w c, b ×w d� if msb(a) = msb(b) = msb(c) = msb(d)
∧ b × d − a × c < 2w

�a ×w d, b ×w c� if msb(a) = msb(b) = 1 ∧ msb(c) = msb(d) = 0
∧ b × c − a × d < 2w

�b ×w c, a ×w d� if msb(a) = msb(b) = 0 ∧ msb(c) = msb(d) = 1
∧ a × d − b × c < 2w

� otherwise.

Now, signed and unsigned bit-vector multiplication agree for segments that do not
straddle a pole. This is an important observation, which gives us a handle on precise
multiplication across arbitrary delimited w-intervals:

�a, b� ×us �c, d� = (�a, b� ×u �c, d�) ∩ (�a, b� ×s �c, d�)
The use of intersection in this definition is the source of the added precision. Each of ×u
and ×s gives a correct over-approximation of multiplication; therefore, the intersection
is also a correct over-approximation.

This now allows us to do general signedness-agnostic multiplication by joining the
segments obtained from each piecewise hemisphere multiplication:

s × t =
⊔̃

{m | u ∈ cut(s), v ∈ cut(t), m ∈ u ×us v}
Example 3.2. Consider the multiplication �1111, 1001� × �0000, 0001�. The two

multiplicand intervals are shown in Figure 7. The cut of the first w-interval is
{�1111, 1111�, �0000, 0111�, �1000, 1001�}; the cut of the second is {�0000, 0001�}. The
three separate segment multiplications give:

(1) �1111, 1111� ×u �0000, 0001� = �, (or, [15, 15] × [0, 1] = �)
�1111, 1111� ×s �0000, 0001� = �1111, 0000� (or, [−1,−1] × [0, 1] = [−1, 0])
∴ �1111, 1111� ×us �0000, 0001� = {�1111, 0000�}

(2) �0000, 0111� ×u �0000, 0001� = �0000, 0111� (or, [0, 7] × [0, 1] = [0, 7])
�0000, 0111� ×s �0000, 0001� = �0000, 0111� (or, [0, 7] × [0, 1] = [0, 7])
∴ �0000, 0111� ×us �0000, 0001� = {�0000, 0111�}

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:15

(3) �1000, 1001� ×u �0000, 0001� = �0000, 1001� (or, [8, 9] × [0, 1] = [0, 9])
�1000, 1001� ×s �0000, 0001� = �1000, 0000� (or, [−8,−7] × [0, 1] = [−8, 0])
∴ �1000, 1001� ×us �0000, 0001�
= �0000, 1001� ∩ �1000, 0000�
= {�1000, 1001�, �0000, 0000�}

Applying
⊔̃

, we get the maximally precise result �1111, 1001� ([15, 9] or [−1, 9] depend-
ing on signedness). Note the crucial role played by ×us in obtaining this precision. For
example, in Case (1), where we have no information about the result of unsigned multi-
plication (�1111, 1111� ×u �0000, 0001� = �), we effectively assume that multiplication
is signed, obtaining a much tighter result. The role of ×us is to do signed and unsigned
multiplication simultaneously.

Example 3.2 illustrates an important point. In Section 1, we showed how it can
sometimes be advantageous to perform analysis assuming signed integers, while in
other cases it is better to assume unsigned integers. It is natural to ask: Why not
simply perform two analyses, one under each assumption, and combine the results?
Example 3.2 shows clearly the weakness of this idea. For the example, both a “signed”
analysis and an “unsigned” analysis yields �. In an unsigned analysis, this happens
since already �1111, 1111� ×u �0000, 0001� = � (Case (1)). For a signed analysis, note
that the three outcomes, �1111, 0000�, �0000, 0111�, and �1000, 0000�, together span
all possible values; thus, again, the result is �.

What is different and important about our approach is that the signed/unsigned
case analysis happens at the “micro-level,” throughout the computation, rather than
performing the entire computation each way and choosing the best result. This is
what we have in mind when we say that the abstract operations deal with superposed
signed/unsigned states. The superposition idea is general and works for other opera-
tions. We can define all abstract operations by “segment case analysis” similar to that
of Example 3.2. However, this does not always add precision—many abstract opera-
tions can be captured using definitions that are equivalent to the case-by-case analysis,
but simpler. Sometimes two cases suffice, sometimes one will do. As can be seen in the
following, some operations need three cases (and apply cut), while others need two (and
apply ssplit or nsplit). We have already seen operations that require no segment case
analysis at all (addition and subtraction).

Signed and unsigned division are different operations, owing to the need to round
towards zero. For example, in unsigned 4-bit integer arithmetic, 1001/0010 yields 0100
(9/2 = 4), while in signed 4-bit integer arithmetic it yields 1101 (–7/2 = –3). We follow
LLVM in calling signed and unsigned division sdiv and udiv, respectively.

For unsigned division we define:

udiv(s, t) =
⊔̃

{u /u (v \ �0, 0�) | u ∈ ssplit(s), v ∈ ssplit(t)},

where /u is defined in terms of usual unsigned integer division (note that, in this context,
neither c nor d will be 0):

�a, b� /u �c, d� = �a /u d, b /u c�.
Signed interval division is similarly defined:

sdiv(s, t) =
⊔̃

{u /s (v \ �0, 0�) | u ∈ cut(s), v ∈ cut(t)},

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:16 G. Gange et al.

where

�a, b� /s �c, d� =

⎧⎪⎨⎪⎩
�a /s d, b /s c� if msb(a) = msb(c) = 0
�b /s c, a /s d� if msb(a) = msb(c) = 1
�b /s d, a /s c� if msb(a) = 0 and msb(c) = 1
�a /s c, b /s d� if msb(a) = 1 and msb(c) = 0.

Example 3.3. Signed-integer interval division sdiv(�0100, 0111�, �1110, 0011�) (i.e.,
sdiv(�4, 7�, �−2, 3�)) yields �0001, 1110� (i.e., �1,−2�). In this case, the dividend straddles
no pole, but the divisor straddles the south pole, thus is split into �1110, 1111� and
�0001, 0011�, the 0 having been made an endpoint by cut and excised by the difference
operation. Now dividing �0100, 0111� by �1110, 1111� (and rounding towards 0) yields
�1001, 1110� (i.e., �−7,−2�). Dividing �0100, 0111� by �0001, 0011� yields �0001, 0111�
(i.e., �1, 7�). Application of

⊔̃
will close the smallest gap between the two: �1001, 1110�
̃

�0001, 0111� = �0001, 1110�.
LLVM’s remainder operations urem and srem are congruent with division’s use of

rounding towards 0, in the sense that they preserve the invariant n = (n /s k) × k +
rem(n, k) for all n and k. In particular, srem(n, k) has the same sign as n. The Intel X86
instruction set’s IDIV instruction applied to signed integers, and DIV instruction applied
to unsigned integers, behave similarly (these instructions yield both the quotient and
remainder).

In practice, the remainder operations are almost always used with a fixed value
k. In the interval versions, they are more unwieldy than the other arithmetic op-
erations, lacking certain monotonicity properties. More precisely, even when argu-
ments stay within hemispheres, the interval endpoints a, b, c, and d are not sufficient
to determine the endpoints of urem(�a, b�, �c, d�). For example, given the expression
urem(�3, 7�, �4, 5�), and using % for the remainder operation on integers, the combina-
tions 3 % 4, 3 % 5, 7 % 4, and 7 % 5 will only reveal the resulting values 2 and 3. However,
values from the interval �3, 7� can also produce remainders 0, 1, and 4, when divided
by 4 or 5.

We, therefore, design the abstract remainder operation urem(s, t) to ignore s, unless
the result of the division s /u t is a singleton interval. If the result of division is not
a singleton, then the remainder is considered maximally ambiguous, that is, only
bounded from above, by the largest possible modulus. Thus, defining

amb�a, b� = �0, b − 1�
we have

urem(s, t) = ⊔̃ {u %u (v \ �0, 0�) | u ∈ ssplit(s), v ∈ ssplit(t)}

s %u t =
{

s − (s /u t) × t if # (s /u t) = 1
amb(t) otherwise.

For example, urem(�16, 18�, �12, 14�) = �2, 6�, since 16/14 = 18/12 = 1.
The case of srem(s, t) is similar, except for the need to make sure that the resulting

sign is that of s.

srem(s, t) = ⊔̃ {u %s (v \ �0, 0�) | u ∈ ssplit(s), v ∈ ssplit(t)}

s %s t =
{

s − (s /s t) × t if # (s /s t) = 1
sign(s) × amb(sign(t) × t) otherwise.

Here sign(s) is −1 if msb(s) = 1, and 1 otherwise.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:17

Fig. 8. Warren’s method (in C) for finding the bounds of �a, b� | �c, d� in the unsigned case, w = 32.

3.5. Analyzing Bit-Manipulating Expressions

For the logical operations, it is tempting to simply consider the combinations of interval
endpoints, at least when no interval straddles two hemispheres, but that does not
work. For example, the endpoints of �1010, 1100� are not sufficient to determine the
endpoints of �1010, 1100� | �0110, 0110�. Namely, 1010|0110 = 1100|0110 = 1110, but
1011|0110 = 1111. Instead, we use the unsigned versions of algorithms provided by
Warren [2003] (pages 58–62), but adapted to w-intervals using a south pole split. We
present the method for bitwise-or |; those for bitwise-and and bitwise-xor are similar.

s|t =
⊔̃

{u|wv | u ∈ ssplit(s), v ∈ ssplit(t)},

where |w is Warren’s unsigned bitwise or operation for intervals [Warren 2003], an
operation with complexity O(w). Note that the signed and unsigned cases have different
algorithms, both given by Warren [2003]; Figure 8 shows how to compute the lower
and upper bounds in the unsigned case.

Signed and zero extension are defined as follows. We assume words of width w are
being extended to width w + k, with k > 0.

sext(s, k) = ⊔̃ {�(msb(a))ka, (msb(b))kb� | �a, b� ∈ nsplit(s)}
zext(s, k) = ⊔̃ {�0ka, 0kb� | �a, b� ∈ ssplit(s)}.

Truncation of a bit vector a to k < w bits (integer downcasting), written trunc (a, k),
keeps the lower k bits of a bit vector of length w. Accordingly, we overload trunc (s, k) to
denote a w width w-interval s truncated to a k width w-interval. Truncation is defined
as:

trunc(s, k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⊥ if s = ⊥
�trunc(a, k), trunc(b, k)� if s = �a, b� ∧ a>>ak = b>>ak

∧ trunc(a, k) ≤ trunc(b, k)
�trunc(a, k), trunc(b, k)� if s = �a, b� ∧ (a>>ak) + 1 ≡2w b>>ak

∧ trunc(a, k) �≤ trunc(b, k)
� otherwise,

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:18 G. Gange et al.

where >>a is arithmetic right shift. Once truncation is defined, we can easily define left
shift:

s << k =
⎧⎨⎩ ⊥ if s = ⊥

�a<< k, b<< k� if trunc(s, w − k) = �a, b�
�0w, 1w−k0k� otherwise.

Logical right shifting (>>l) requires testing if the south pole is covered:

s>>lk =
⎧⎨⎩ ⊥ if s = ⊥

�0w, 0k1w−k� if sp ⊆ s
�a>>lk, b>>lk� if s = �a, b�,

and arithmetic right shifting (>>a) requires testing if the north pole is covered:

s>>ak =
⎧⎨⎩ ⊥ if s = ⊥

�1k0w−k, 0k1w−k� if np ⊆ s
�a>>ak, b>>ak� if s = �a, b�.

Shifting with variable shift, for example, s << t, can be defined by calculating the
(fixed) shift for each k ∈ �0, w − 1�, which is an element of t, and over-joining the
resulting w-intervals.

3.6. Dealing with Control Flow

When dealing with signedness agnostic representations, comparison operations must
be explicitly signed or unsigned. Taking the “then” branch of a conditional with condi-
tion s ≤0 t can be thought of as prefixing the branch with the constraint “assume s ≤0 t.”
If we assume that the program has been normalized such that s and t are variables,
then we can tighten the bounds on s and t as they apply to statements only executed if
this assumption holds. We compute s′ and t′ as updated versions of the bounds s and t,
respectively, as follows:

s′ =
{ ⊥ if t = ⊥

s if 1w ∈ t
s �̃ �0w, b� if t = �a, b�

t′ =
{ ⊥ if s = ⊥

t if 0w ∈ s
t �̃ �a, 1w� if s = �a, b�.

Signed comparison (≤2w−1) is similar, but replaces 1w by 01w−1 and 0w by 10w−1. If
either of s′ and t′ is ⊥, we can conclude that the assumption is not satisfiable, thus the
following statements are unreachable.

It may then be possible to propagate these revised bounds back to the vari-
ables from which s and t were computed. For example, if we have the bounds
x = �0000, 0111� when executing s = x+1; t = 3; assume s ≤0 t; then we derive
bounds s = �0001, 1000�, t = �0011, 0011� before the assume, and s′ = �0000, 0011�, t′ =
�0011, 0011� after. From this, moreover, we can propagate backwards to derive the
tighter bounds x′ = �0000, 0010� for x after the assume (using the fact that + and - are
inverse operations).

Finally, at confluence points in the program, such as ϕ-nodes in LLVM or targets
of multiple jumps in assembler, we use over-lub

⊔̃
to combine bounds from multiple

sources.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:19

4. RELATIONSHIP WITH OTHER DOMAINS

In this section, we establish the relationship between wrapped intervals and a range
of common value domains. For convenience, we use m to denote the modulus of a given
integer domain. We can compare abstract domains with respect to expressiveness.
Given abstract domains A and B approximating a set of values V, we say A is at least
as expressive as B (denoted A � B) if, for every element y ∈ B approximating a set
S ⊆ V, there is some element x ∈ A such that x approximates S, and γA(x) ⊆ γB(y).
Two domains are incomparable if A �� B and B �� A. They are equivalent, denoted ∼=, if
A � B and B � A.

Given a finite (although possibly quite large) set of possible values V, the most
expressive possible abstract domain is the power-set domain P(V).

PROPOSITION 4.1. For m ≤ 3, the wrapped-interval domain Wm ∼= P(Zm).

PROOF. For m ≤ 2 or intervals of size 1, this is trivial, since Wm includes �, ⊥, and
all singletons. The following table shows that W3 can express all elements of P(Z3):

Set Interval Set Interval
∅ ⊥ {0, 1} �0, 1�

{0} �0, 0� {0, 2} �2, 0�

{1} �1, 1� {1, 2} �1, 2�

{2} �2, 2� {0, 1, 2} �

Therefore, Wm is exact for m ≤ 3.

For larger m, Wm cannot express {0, 2} exactly, thus is less expressive than P(Zm).
One may wonder whether wrapped intervals are equivalent to some finite partition-

ing of the number circle, or some reduced product of classical intervals. We introduce
the notation Ik

m denote a classical interval domain with the fixed wrapping point k
(thus the unsigned interval domain is I0

m, and the signed version is Im/2
m). Let R{k1,...,kp}

m

denote the reduced product Ik1
m × · · · × Ikp

m .

PROPOSITION 4.2. For m > 3, Wm is incomparable with RK
m for 1 < |K| < m

2 .

PROOF. Let K = {k1, . . . , kp} with the ki in ascending order. As p < m
2 , there must be

some adjacent pair of elements ki, kj , where kj − ki ≥ 3.
Consider the set S = {ki + 1, kj}. Under Iki

m, S is approximated by [ki + 1, kj]; the
approximation under Ikj

m is [kj, ki + 1]. The concrete intersection of these intervals is
exactly S; this set can be exactly represented under RK

m. The possible approximations
under Wm are �ki + 1, kj� and �kj, ki + 1�. The former contains ki + 2, and the latter
contains ki. Therefore Wm cannot represent S exactly, so Wm �� RK

m.
Now consider the set S′ = {k1 − 1, k1, k2 − 1, k2, . . . , kp − 1, kp}. This set is covered by

the wrapped interval [kj − 1, ki], which excludes (at least) ki + 1. For each component
domain Ik

m, we have k ∈ S′, k − 1 ∈ S′; the best approximation under Ik
m is �. As such,

the approximation under RK
m is also �. Therefore, RK

m �� Wm.
As Wm �� RK

m, and RK
m �� Wm, the two domains are incomparable.

A corollary is that the wrapped interval domain Wm is incomparable with the re-
duced product of signed and unsigned analysis (I0

m × Im/2
m). Figure 9 gives two con-

crete examples of this behavior over 4-bit values (Z16). Note how the reduced product
gives a superior representation of S1 = {0000, 1000}: Taking the intersection of the
two segments for S1 in Column (b) eliminates the dashed portions and gives back

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:20 G. Gange et al.

Fig. 9. For two sets S1 and S2 of 4-bit values, we show (a) the concrete values, and best approximations
under (b) I0

16 × I8
16 and under (c) W16.

S1 exactly, whereas the wrapped interval approximation (c) contains additional val-
ues, such as 0011. On the other hand, the reduced product is inferior in the case of
S2 = {0000, 0111, 1000, 1111}. Column (b) shows how the reduced product conflates S2
with �, and Column (c) shows the more precise wrapped interval that results. Also
note that if the largest gap between elements of K is 2 (which is possible with |K| ≥ m

2),
we have RK

m
∼= P(Zm).

While wrapped analysis is incomparable with the reduced product of up to m/2 clas-
sical interval analyses, one might hypothesize that wrapped intervals were uniformly
more accurate than a single interval analysis, such as Im/2

m or I0
m, but this it not nec-

essarily the case. Consider the approximation of the expression ({0110} ∪ {1001}) ∩
{0110, 0111}. In I8

16 the calculation ([0110, 0110]
 [1001, 1001]) � [0110, 0111] yields
[1001, 0110] as the result of the
, and finally [0110, 0110]. In W16 the calculation
(�0110, 0110�
̃ �1001, 1001�) �̃ �0110, 0111� yields �0110, 1001� as the result of the
̃,
and finally �0110, 0111�. Thus the wrapped interval analysis can be less accurate be-
cause it can choose an incomparable result of the join, which turns out later to give
less precise results. We can easily modify wrapped interval analysis to always prefer a
wrapped interval that does not cross the north pole where possible. With that, wrapped
interval analysis is uniformly more accurate than signed interval analysis, since if all
descriptions cross the north pole then the signed interval analysis must return �.

In the following, we assume that transfer functions over Im/2
m and Wm coincide over

the unwrapped subset of Wm. That is, for a function f and arguments x1, . . . , xn ∈ Im/2
m :

fI(x1, . . . , xn) = � ⇔ �m
2 − 1, m

2 � ∈ fW (x1, . . . , xn)

fI(x1, . . . , xn) �= � ⇒ fI(x1, . . . , xn) = fW (x1, . . . , xn).

Given implementations of fI and fW , which do not necessarily coincide on Im/2
m , we can

still construct strengthened versions f ′
I and f ′

W that satisfy this requirement (assuming
�̃ is north-biased) as follows:

f ′
I(X) =

{
fI(X) � fW (X) if fW (X) ∈ Im/2

m

fI(X) otherwise.

f ′
W (X) = fI(X) �̃ fW (X)

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:21

Fig. 10. Nonterminating analysis; Column i shows (x, y) in Round i.

We also require all operations to be monotone with respect to �.

Definition 4.3. A function f over a partially ordered set (O,�) is monotone with
respect to an element x if ∀x′ · x′ � x ⇒ f (x′) � f (x), and ∀x′ · x � x′ ⇒ f (x′) � f (x).

Thus, f is monotone if it is monotone with respect to all elements of O. It is not hard
to see that all operations on Wm are monotone with respect to �.

THEOREM 4.4. Wm modified to favor intervals that do not straddle the north pole is
uniformly more accurate than Im/2

m .

PROOF. Assume that there is some function f for which fW is not strictly more
accurate than fI . Then, there must be some elements X ∈ (Im/2

m)n, X′ ∈ Wn
m such that:

∀i ∈ [1, n] · x′
i � xi, fW (X) �� fI (X′).

We have xi ∈ Im/2
m and x′

i � xi for all i. Thus, either x′
i ∈ Im/2

m or xi = �. Now define Y as
follows:

yi =
{

x′
i ifx′

i ∈ Im/2
m

� otherwise.

Then we have X′ � Y � X. As fI and fW coincide over Im/2
m , we have fW (Y) � fI(X).

But since fW is monotone with respect to �, and Y differs from X′ only in elements
that are �, we have fW (X′) � fW (Y). Therefore, fW (X′) � fI (X).

5. NONTERMINATION AND WIDENING

This section revisits the issue mentioned in Section 3, namely that
̃ is neither asso-
ciative nor monotone. Although the set of w-intervals is finite, the fact that
̃ is not
monotone raises a major problem: a least fixed point may not exist because multiple
fixed points could be equally precise, and even worse, when
̃ is used in the role of a
join operator, the analysis may not terminate.

Figure 10 shows an example in which, for simplicity, we assume that x and y are
2-bit integers. In annotating program points, we use 1 for the w-interval �01, 01�, 3 for
�11, 11�, 0 for �01, 11�, and 2 for �11, 01�. Note that the result of Round 5 is identical

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:22 G. Gange et al.

to the result of Round 3, thus the result will oscillate forever between the annotations
given by Columns 3 and 4.

While this pathological behavior can be expected to be rare, a correct and terminating
analysis still must take the possibility into account.

In practice, there is an easy solution to the nontermination problem. Since the w-
interval domain contains chains of length O(2w), acceleration is required anyway for
practical purposes, even though the domain is finite. Therefore, it seems reasonable to
apply a widening operator. The use of widening will ensure termination in our analysis,
avoiding the nonmonotonicity problem of
̃.

In the classical setting, we have a (collecting) semantic domain and an abstract
domain, both assumed to be lattices, and a pair (α, γ) of adjoined functions. However,
the concept of a Galois connection makes sense also if we define it as a pair of mappings
between two posets, or even preordered sets. For now, assume that (A,�) and (C,≤)
are posets. The pair α : C → A and γ : A → C form a Galois connection if

α(x) � y ⇔ x ≤ γ (y). (1)

From this condition, it follows that (a) α and γ are monotone, (b) α(γ (y)) � y for all
y ∈ A, and (c) x ≤ γ (α(x)) for all x ∈ C. In fact, taken together, (a)–(c) are equivalent to
(1) [Cousot and Cousot 1977].

Moreover, if α is surjective it follows that α ◦ γ is the identity function; in this case,
we talk about a Galois surjection. Galois surjections are common in applications to
program analysis. However, there are natural examples in program analysis in which
a nonsurjective Galois connection is used.3

We usually also assume that we are dealing with (complete) lattices C and A. Having
lattices in itself does not guarantee the existence of a Galois connection.

Let C (the concrete domain) be a finite-height meet-semilattice and let f : C → C
be monotone. Let A (the abstract domain) be a partially ordered set with least element
⊥A, and let g : A → A be a (not necessarily monotone) function approximating f , that
is,

∀y ∈ A (f (γ (y)) � γ (g(y)). (2)

Consider a “g-cycle” Y = {y0, . . . , ym−1} ⊆ A. By this we mean that the set Y satisfies

0 ≤ i < m ⇒ g(yi) = yi+1 mod m.

Now letting x0 = �
0≤i<m γ (yi), we have:

f (x0) � f (γ (yi)) for all 0 ≤ i < m, by monotonicity of f
� γ (g(yi)) for all 0 ≤ i < m, by (2)
= γ (yi+1 mod m) for all 0 ≤ i < m.

Thus, f (x0) � �
0≤i<m γ (yi) = x0. Clearly ⊥C � x0, thus by monotonicity of f , and the

transitivity of �, fk(⊥C) � x0 for all k ∈ N. As C has finite height, lfp(f) � x0. In other
words, each element of the g cycle is a correct result.

We therefore could solve the problem of possible oscillation by checking for cycles at
each iteration. This would mean performing Kleene iteration over g as usual, generat-
ing the sequence of elements ⊥A, g(⊥A), g(g(⊥A)), Call this sequence g0, g1, g2,
For each i > 0, check whether gi−1 � gi. If so, continue as usual; if not, apply loop
checking in the evaluation of gi+1 and subsequent elements.

In practice, however, we only encounter cycles with constructed, pathological exam-
ples. For this reason, it seems acceptable to apply a less precise approach in the form of

3An example is given by King and Søndergaard [2010], who abstract a Boolean function to its “congruent
closure” as part of a scheme to improve affine congruence analysis [Granger 1991].

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:23

widening, in particular since this is required anyway, to accelerate convergence of the
analysis. Although the set of w-intervals is finite, it contains chains of length O(2w),
and acceleration is regularly needed.

We therefore define an upper bound operator ∇, based on the idea of widening by
roughly doubling the size of a w-interval. First, s∇⊥ = ⊥∇s = s, and s∇� = �∇s = �.
Additionally,

�u, v�∇�x, y� =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�u, v� if �x, y� ⊆ �u, v�
� if # �u, v� ≥ 2w−1

�u, y�
̃ �u, 2v −w u +w 1� if �u, v�
̃ �x, y� = �u, y�
�x, v�
̃ �2u −w v −w 1, v� if �u, v�
̃ �x, y� = �x, v�
�x, y�
̃ �x, x +w 2v −w 2u +w 1� if u ∈ �x, y� ∧ v ∈ �x, y�
� otherwise.

Then ∇ is an upper bound operator [Nielson et al. 1999] and we have the property

s∇t = s ∨ s∇t = � ∨ # s∇t ≥ 2 # s.

Given f : W2w → W2w , we define the accelerated sequence { f n
∇}n as follows:

f n
∇ =

⎧⎨⎩
⊥ if n = 0
f n−1
∇ if n > 0 ∧ f (f n−1

∇) � f n−1
∇

f n−1
∇ ∇ f (f n−1

∇) otherwise.

Since { f n
∇}n is increasing (whether f is monotone or not) and W2w has finite height, the

accelerated sequence eventually stabilizes. It is undesirable to widen at every iteration,
since it gives away precision too eagerly. However, as observed by Gange et al. [2013a],
the common practise of widening every n > 1 iteration is unsafe for nonlattice domains
such as w-intervals, because it is possible that such a sequence will not terminate. Our
implementation performs normal Kleene iteration for the first five steps; if that does
not find a fixed point, we begin widening at every step. Gange et al. [2013a] discuss
several alternative strategies.

6. EXPERIMENTAL EVALUATION

We implemented wrapped interval analysis for LLVM 3.0 and ran experiments on an
Intel Core with a 2.70Gz clock and 8GB of memory. For comparison, we also imple-
mented an unwrapped fixed-width interval analysis using the same fixed point algo-
rithm. Since we analyze LLVM IR, signedness information is in general not available.
Therefore, to compare the precision of “unwrapped” and “wrapped” analysis, we ran
the unwrapped analysis assuming that all integers are signed, similarly to Teixera and
Pereira [2011]. We used the Spec CPU 2000 benchmark suite widely used by LLVM
testers. The code for the analyses and the fixed point engine is publicly available at
http://code.google.com/p/wrapped-intervals/.

Tables I, II, and III show our evaluation results. Columns TU and TW show analysis
times (average of 5 runs) for the unwrapped and wrapped interval analysis, respec-
tively. Column I shows the total number of integer intervals considered by the analyses,
Column PU shows the number of cases in which the unwrapped analysis infers a delim-
ited interval, and PW does the same for wrapped intervals. Finally, column GW shows
the number of cases in which the wrapped analysis gave a more precise result (it is
never less precise). In some cases, both analyses produce delimited intervals, but the
wrapped interval is more precise. For instance, for 164.gzip (Table I), there are seven
such cases. This explains why, in most cases, GW > PW − PU .

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

http://code.google.com/p/wrapped-intervals/

1:24 G. Gange et al.

Table I. Comparison Between Unwrapped and Wrapped Interval Analyses
with Options -widening 5 -narrowing 2

Program TU TW
TW
TU

I PU
PU

I PW
PW

I GW
GW

I

164.gzip 0.09s 0.22s 2.4 1,511 272 18% 309 20% 44 3%
175.vpr 0.38s 1.46s 3.8 4,143 321 8% 378 9% 57 1%
176.gcc 2.10s 4.42s 2.1 16,711 5,147 31% 5,683 34% 570 3%
186.crafty 1.19s 2.15s 1.8 17,679 3,411 19% 3,960 22% 562 3%
197.parser 0.55s 1.96s 3.6 4,736 377 8% 445 9% 76 2%
255.vortex 1.16s 2.42s 2.1 22,813 887 4% 974 4% 88 0%
256.bzip2 0.35s 1.01s 2.9 2,529 411 16% 483 19% 86 3%
300.twolf 0.07s 0.20s 2.9 730 16 2% 20 3% 4 1%

Table II. Comparison Between Unwrapped and Wrapped Interval Analyses with Options -widening 5
-narrowing 2 -instcombine -inline 300

Pgm TU TW
TW
TU

I PU
PU
I PW

PW
I GW

GW
I

164 0.25 0.51 2.04 2,781 558 20% 649 23% 101 3%
175 0.97 3.58 3.69 7,678 790 10% 1,014 13% 283 3%
176 10.15 18.96 1.86 92,791 26,649 28% 32,035 34% 5,418 5%
186 1.83 3.52 1.92 24,118 5,949 24% 6,842 28% 918 3%
197 0.96 3.03 3.15 6,672 938 14% 1,255 18% 340 5%
255 2.02 3.74 1.85 37,120 2,593 6% 2,817 7% 225 0%
256 0.29 1.04 3.58 2,447 436 17% 535 21% 113 4%
300 1.56 4.56 2.92 17,812 654 3% 979 5% 326 1%

Table I shows our results4 when widening is only triggered if an interval has not
stabilized after five fixed-point iterations. We implement narrowing simply as two
further iterations of abstract interpretation over the whole program once a fixed point
is reached. We have tested with greater widening and narrowing values but we did not
observe any significant change in terms of precision.

We note that both analyses are fast, and the added cost of wrapped analysis is
reasonable. Regarding precision, the numbers of proper intervals (PU and PW) are
remarkably low compared with the total number of tracked intervals (I). There are
three main reasons for this. First, our analysis is intraprocedural only. Second, it does
not track global variables or pointers. Third, several instructions that cast nontrackable
types (for example, ptrtoint, fptosi) are not supported. In spite of these limitations,
the numbers in Column GW show that wrapped interval analysis does infer better
bounds.

In our second experiment (Table II) we tried to mitigate two of the limitations while
preserving the widening/narrowing parameter values. The -instcombine option uses an
intraprocedural LLVM optimization that can remove unnecessary casting instructions
by combining two or more instructions into one. The option -inline 300 mitigates
the lack of interprocedural analysis by performing function inlining if the size of the
function is less than 300 instructions but only if LLVM considers it safe to inline them
(function pointers cannot be inlined, for example). These two optimizations pay off:
the number of proper intervals increases significantly, both in the unwrapped and in
the wrapped cases. The analysis time also increases, for each analysis. Note that we
only show analysis times of the wrapped and unwrapped analyses, and we omit the
analyses times of the LLVM optimizations. The number of variables for which wrapped

4These numbers are the closest to our previous experiment published in Navas et al. [2012]. The main
differences with Navas et al. [2012] are due to two factors: different widening/narrowing parameter values
and some changes after fixing some bugs.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:25

Table III. Comparison Between Unwrapped and Wrapped Interval Analyses with Options -widening 5
-narrowing 2 -instcombine -inline 300 -enable-optimizations

Pgm TU TW
TW
TU

I PU
PU
I PW

PW
I GW

GW
I

164 0.18 0.55 3.05 2,580 474 18% 543 21% 73 2%
175 0.90 3.32 3.68 6,942 610 8% 804 11% 225 3%
176 10.26 19.19 1.87 94,943 26,641 28% 31,718 33% 5,099 5%
186 1.66 3.30 1.98 22,787 5,321 23% 6,068 26% 761 3%
197 0.91 2.98 3.27 6,744 742 11% 1,050 15% 314 4%
255 2.27 4.87 2.14 36,981 2,599 7% 2,800 7% 202 0%
256 0.27 0.92 3.40 2,252 378 16% 454 20% 90 3%
300 1.80 5.06 2.81 16,475 452 2% 657 3% 205 1%

Table IV. Number of Ties Comparing with Total Number of
̃ for the Three Options Used
in Table I, Table II, and Table III

Table I Options Table II Options Table III Options
Program Joins Ties Joins Ties Joins Ties
164.gzip 20,695 109 22,414 149 29, 170 93
175.vpr 79,506 213 199,807 492 176, 584 522
176.gcc 878,707 3,102 1,377,207 5,912 1,415,847 6,782
186.crafty 83,668 728 143,466 667 136, 924 939
197.parser 95,149 124 136,156 736 140, 313 798
255.vortex 250,409 194 312,739 603 929, 907 764
256.bzip2 44,613 129 44,783 130 43, 898 134
300.twolf 224,425 274 247,680 306 894, 890 353

analysis gave a more precise result is much higher than in the previous experiment,
for a reasonable cost in time.

Our third experiment (Table III) repeats the same previous experiment, but with
the option -enable-optimizations. This option allows other LLVM optimizations such
as constant propagation and dead code elimination. Interestingly, these optimizations
appear to have little impact, whether we consider precision or time, for either analysis.

Finally, Table IV shows the number of ties that needed to be resolved during the
calculation of over-joins,
̃. Whenever there is a tie, we choose the interval that avoids
covering the north pole. We also ran the same experiment (but only for Table III options)
where the opposite choice is made. For that experiment, all results remained the same,
except for 176.gcc, where GW came out as 5,392 rather than 5,418. There were no cases
in which unwrapped intervals produced more precise results than wrapped intervals.

7. AN APPLICATION: REMOVAL OF REDUNDANT INSTRUMENTATION

The experiments reported in the previous section show that, on real-world programs,
signedness-agnostic wrapped interval analysis finds tighter bounds in many cases,
compared to unwrapped, but sound, fixed-width integer interval analysis. However,
the results in Tables I through III do not say exactly how much tighter the intervals
are, nor does it follow from the results that there are realistic applications (such as
program verification) that are able to capitalize on the tighter bounds. To address this,
we have conducted a simple experiment with code that has been instrumented by the
Integer Overflow Checker (IOC) [Dietz et al. 2012]. IOC instruments each arithmetic
instruction that can yield signed integer overflow, injecting trap handlers. As we used
LLVM 3.0, we installed its corresponding IOC version and compiled programs with
option -fcatch-undefined-ansic-behavior.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:26 G. Gange et al.

Table V. Comparison Between Unwrapped and Wrapped Interval Analyses
in the Context of Removing Redundant Instrumentation Using the IOC Tool

without LLVM optimizations with LLVM optimizations
Program T RU RW T RU RW

164.gzip 365 210 210 228 55 57
175.vpr 741 136 136 1,149 70 70
176.gcc 3,027 1,442 1,471 3,030 512 544
186.crafty 3,309 1,440 1,442 1,680 265 265
197.parser 751 177 180 727 34 36
255.vortex 746 485 485 288 11 11
256.bzip2 676 271 271 486 85 85
300.twolf 3,297 476 479 2,873 34 37

The results are shown in Table V. Column T shows the total number of trap han-
dlers inserted in the code by IOC. Column RU shows the number of redundant traps
detected by unwrapped intervals and RW for the case of wrapped intervals. Columns
labeled “without LLVM optimizations” show the case when the analyses are run with-
out any LLVM optimization (only with options -widening 5 -narrowing 2). Columns
labelled “with LLVM optimizations” are executed with all LLVM optimizations enabled,
that is, with options -widening 5 -narrowing 2 -instcombine -inline 300 -enable-
optimizations.

Note that the number of redundant traps are often higher in the case of without LLVM
optimizations. The reason is that many traps can be removed by constant propagation
(used if option -enable-optimizations is enabled).

While the improvements are small or absent in most cases, the experiment does
indicate that the improved bounds pay off for some applications.

For most cases for which an IOC trap block is deemed necessary, the judgement is
based on a wrapped interval that is �. In some 60% of these cases, the main reason
for arriving at the value � is the involvement of either (unknown) input or of pointers.
This suggests that interprocedural wrapped analysis and/or support for pointers may
pay off for real applications. In any case, since the overhead of using wrapped intervals
is relatively small, the wrapped interval analysis appears useful even in its naive
form.

Finally, we observe that a wrapped analysis naturally keeps track of “nonzeroness”
of variables, while a signed unwrapped analysis cannot, as nonzeroness is a form of
disjunctive information. A common case is an interval that starts out as � but is
refined by the wrapped analysis after a conditional of the form if (x �= 0), turning into
the wrapped interval �1,−1�. This tighter interval does not have any impact in the
removal of unnecessary IOC trap blocks, but it would be useful for other applications
such as CCured [Condit et al. 2003], if the wrapped interval analysis were enhanced to
support pointers. CCured adds memory safety guarantees to C programs by enforcing
a strong type system at compile time. The parts that cannot be enforced are checked
at runtime. A wrapped analysis could help CCured remove runtime checks for null
pointer dereferences.

Note that the complement of a delimited wrapped interval is always a delimited
wrapped interval. In contrast, for the classical interval domain, the best approximation
of the complement of any finite interval is �. This too improves the expressive power
of wrapped intervals. For example, given a conditional if (x>=10 && x<100), both
wrapped and unwrapped intervals derive useful information for the then branch, but
only wrapped intervals derive useful information about x for the else branch.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:27

8. OTHER APPLICATIONS OF WRAPPED INTERVALS

Signedness information is critical in the determination of the potential for under- or
overflow. In that context, the improved precision of bounds analysis that we offer is an
important contribution.

There is ample evidence [Dietz et al. 2012; Wang et al. 2013] that overflow is very
common in real-world C/C++ code. Dietz et al. [2012] suggest, based on scrutiny of many
programs, that much use of overflow is intentional and safe (though not portable), but
also that the majority is probably accidental. Our interval analysis has a broader scope
than C/C++, but it is worth mentioning that even in the context of C/C++, overflow
problems are not necessarily removed by adherence to coding standards. Wang et al.
[2013] remind us of the many aspects of C/C++ that are left undefined by the language
specifications. This lack of definition gives an optimizing compiler considerable license,
and Wang et al. [2013] show that, in practice, this license is often misused to undermine
safe programming, for example, through removal of mandated overflow checks.

In C/C++, what happens in the case of signed over- or underflow is undefined. Many
C programmers, however, rely on overflow behavior that reflects the nature of the
underlying machine arithmetic. The following snippet, taken from an early version of
C’s atoi, is typical:

char *p;
int f, n;
...
while (*p >= ’0’ && *p <= ’9’)

n = n * 10 + *p++ - ’0’;
return (f ? -n : n);

There are two independent overflow issues. First, in the assignment, if the + is eval-
uated before the -, addition may cause overflow. Second, when f is nonzero and n is
the smallest integer, the unary minus causes overflow. This use of overflow is most
likely deliberate, and typical of C programmers’ reliance on language properties that
are plausible, but not guaranteed by the language specification.

The snippet’s problematic assignment may be “repaired” by transforming it to

n = n * 10 + (*p++ - ’0’);

Recent work [Coker and Hafiz 2013; Logozzo and Martel 2013] considers how to per-
form such repairs of overflowing expressions automatically. Sometimes a simple rear-
rangement of operands may suffice, as seen in the atoi example. Other possible repair
tools include the introduction of type casts. For this application, program analysis (e.g.,
interval analysis) is needed.

Also possible is the unintended use of wraparound, owing, for example, to the subtle
semantics of the C language. Simon and King [2007] give this example of a C program
intended to tabulate the distribution of characters in a string s:

char *s;
int dist[256];
...
while (*s) {

dist[(unsigned int) *s]++;
s++;

}

and point out the subtle error arising because *s is promoted to int before the cast
to an unsigned integer takes place [Simon and King 2007]. As a result, dist can be

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:28 G. Gange et al.

accessed at indices [0, . . . , 127] ∪ [232 − 128, . . . , 232 − 1], a set which, we should point
out, is conveniently captured as a wrapped interval.

9. RELATED WORK

9.1. Intervals Using Proper Integers

Interval analysis is a favorite textbook example of abstract interpretation [Nielson
et al. 1999; Seidl et al. 2012]. The classical interval domain I, which uses unbounded
integers, was sketched in Section 2.1. Much of the literature on interval analysis uses
this domain [Su and Wagner 2004; Leroux and Sutre 2007; Gawlitza et al. 2009]. As
discussed in Section 1, such analysis is sound for reasoning about unlimited-precision
integers, but unsound in the context of fixed-width machine arithmetic. In particular,
the assumption of unbounded integers will lead to problems in the context of low-level
languages, including assembly languages, and, as in the case of Rodrigues et al. [2013],
LLVM IR.

9.2. Overflow-Aware Interval Analysis

A simple solution to the mismatch between classical interval analysis and the use of
finite-precision integers is to amend the analysis to keep track of possible overflow and
deem the result of the analysis to be �, that is, void of information, as sketched in
Section 2.2. Abstract interpretation based tools such as Astree [Blanchet et al. 2002]
and cccheck [Fähndrich and Logozzo 2010] use interval analysis (and other kinds of
analysis) in an overflow-aware manner. These tools are able to identify expressions that
cannot possibly create over- or underflow. For other expressions, suitable warnings can
then be issued.

Regehr and Duongsaa [2006] perform bounds analysis in a wrapping-aware manner,
dealing also with bitwise operations by treating the bounds as bit vectors. Brauer and
King [2010] show how to synthesize transfer functions for such wrapping-aware bounds
analysis. Simon and King [2007] show how to make polyhedral analysis wrapping-
aware without incurring a high additional cost. These approaches suffer the problem
discussed earlier: when a computed interval spans a wraparound point, the interval
always contains both the smallest and largest possible integer, so all precision is lost.

9.3. Granger’s Arithmetical Congruence Analysis

The congruence analysis by Granger [1989] is another example of an “independent
attribute” analysis. It is orthogonal to interval analysis, but we mention it here as
it plays a role in many proposals for combined analyses. As with classical interval
analysis, arithmetical congruence analysis takes Z as the underlying domain. For the
program

x = 3;
while (*) {

x = x+4;
}

congruence analysis yields x ≡4 3, a result that happens to be correct also in the context
of 32- or 64-bit integers. However, in general, the analysis is not sound in the context
of fixed-precision integers, as is easily seen by replacing “x+4” by “x+5.”

9.4. Variants of Strided Intervals

Classical Z-based intervals are sometimes combined with other domains, for added
expressiveness. The modulo intervals of Nakanishi et al. [1999] are of the form [i, j]n(r),

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:29

with the reading

[i, j]n(r) = {k ∈ Z | i ≤ k ≤ j, k = nm+ r, m ∈ Z},
thus they combine arithmetical congruences with classical integer intervals. They were
proposed as a tool for analysis to support vectorization. From an abstract interpretation
point of view, the set of modulo intervals has shortcomings. Modulo intervals as defined
by Nakanishi et al. [1999] can only express finite sets, therefore they do not form a
complete lattice.

In contrast, Balakrishnan and Reps [2004] utilize an abstract domain that is the
reduced product of the classical interval domain and arithmetical congruences. A re-
duced interval congruence (RIC) with stride a is a set {ai + d | i ∈ [b, c]}, where [b, c] is
an element of the classical interval domain I.

Later, Reps et al. [2006] introduce the concept of a strided interval that is similar to
a RIC, but intervals are now of the fixed-precision kind. A w-bit strided interval is of
the form s[a, b], with 0 ≤ s ≤ 2w − 1, and with −2w−1 ≤ a ≤ b < 2w−1. It denotes the
set [a, b] ∩ {a + is | i ∈ Z}. Thus all values in s[a, b] are signed, fixed-precision integers,
evenly distributed inside the interval [a, b]. In other words, the domain of strided
intervals is the reduced product domain that combines fixed-width integer intervals
with arithmetical congruences. The special case when the stride is 1 gives the standard
kind of fixed-precision integer interval.

As with all types of intervals discussed in Sections 9.1 through 9.4, strided intervals
do not allow wrapping. The set of strided intervals is not closed under complement,
and is incomparable with the set of wrapped intervals. More precisely, strided intervals
cannot express intervals that straddle the north pole, apart from the two-element
interval �2w−1 − 1,−2w−1�.

Reps et al. [2006] and Balakrishnan [2007] describe strided-interval abstract ver-
sions of many operations. These exclude nonlinear arithmetic operations but include
bitwise operations, where they draw on Warren [2003], as we do.

9.5. Variants of Wrapped Intervals

Sen and Srikant [2007] take the approach of Reps et al. [2006] further, promoting the
number circle view, as we have done in this article. This leads to a kind of strided
wrapped interval, which Sen and Srikant [2007] call Circular Linear Progressions
(CLPs) and utilize for the purpose of analysis of binaries. Setting the stride in their
CLPs to 1 results in precisely the concept of wrapped intervals used in this article.
Sen and Srikant [2007] provide abstract operations, most of which agree with the op-
erations defined here, although their analysis is not signedness agnostic in our sense.
Multiplication is a case in point; for example, for w = 4, a multiplication (signed anal-
ysis) such as [0, 1] × [7,−8] results in � when CLPs are used, whereas multiplication
as defined in this article produces �0,−8�. Sen and Srikant [2007] define many opera-
tions by case in a manner that is equivalent to what we have called a north pole cut
(as Sen and Srikant [2007] assume signed representation). They do not say how to
resolve ties when their “union” operation faces a choice, and they repeatedly refer to
the “CLP lattice.” However, the CLP domain cannot have lattice structure, as it reduces
to the wrapped interval domain when the stride is set to 1 [Gange et al. 2013a]. Thus
an analysis with CLPs faces the termination problems discussed in Section 5, unless
some remedial action is taken. Sen and Srikant [2007] do not provide an experimental
evaluation of CLPs.

Gotlieb et al. [2010] also study wrapped, or “clockwise,” intervals (without strides).
Their aim is to provide constraint solvers for modular arithmetic for the purpose of soft-
ware verification (other work in this area is described in Section 9.6). They show how to
implement abstract addition and subtraction and also how multiplication by a constant

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:30 G. Gange et al.

can be handled efficiently. Again, a claim that clockwise intervals form a lattice cannot
be correct. Gotlieb et al. [2010] assume unsigned representation. General multiplica-
tion and bitwise operations are not discussed. The article presents the unsigned case
only and does not address the issues that arise when signedness information is absent.
The proposed analysis is not signedness-agnostic in our sense.

In the context of work on the verified C compiler CompCert, Blazy et al. [2013]
perform a value analysis of C programs based on the reduced product of signed and
unsigned interval analysis. As we showed in Section 4, wrapped intervals and the re-
duced product construction are incomparable. The experiments by Blazy et al. [2013]
(for w = 32) show that, on a collection of some 20 benchmarks, the reduced product
finds more “bounded intervals” than the wrapped interval analysis that we have pre-
sented here. This is not surprising, as the definition of “bounded” intervals excludes
all intervals with cardinality greater than 231, avoiding all cases for which wrapped
intervals are more precise, as well as such invariants as x ≤s 2 or x ≥u 2. It would be
interesting to rerun the experiments of Blazy et al. [2013] without the restriction to
bounded intervals.

9.6. Bit Blasting and Constraint Propagation Approaches

It is natural to think of bit-blasting as a method for reasoning about fixed-precision in-
tegers, because the bit-level view reflects directly the modulo 2w nature of the problem.
A main attraction of bit-level reasoning is that it can utilize sophisticated DPLL-based
SAT solvers, which are well suited for reasoning about certain bit-twiddling operations.
However, methods based on bit-blasting tend to have serious problems with scalability,
and bit-blasting does not deal gracefully with nonlinear arithmetic operations such as
multiplication and division, even in the context of words that are much smaller than
32 bits. These shortcomings are well understood, and we give, in the following, exam-
ples of methods have been proposed to make up for the fact that important numerical
properties tend to get “lost in translation” when integer relations are blasted into bit
relations.

When constraint propagation is applied to reason about programs, it is usually to
tackle the problem of program verification, rather than program analysis. This makes a
considerable difference. In program verification, there is a heavy reliance on constraint
solvers, and program loops create obstacles that are absent when using abstract inter-
pretation. A constraint solver is a decision procedure; the constraints of interest are
almost always relational, in the sense that they involve several variables. A program
analysis is not a decision procedure, and interval analysis, like many other classical
analyses, is not relational, but rather is an “independent attribute” analysis [Nielson
et al. 1999].

Leconte and Berstel [2006] discuss the potential and dangers of the constraint prop-
agation approach in software verification. A finite-domain constraint satisfaction prob-
lem (CSP) [Marriott and Stuckey 1998] is a constraint (in conjunctive form) over the
variables, together with a mapping D that associates a finite set of values with each
variable. The task of a propagator is, given a constraint, to narrow the domains of the
variables involved. Consider integer variables x and y and the constraint 2x + 2y = 1.
Assume that D(x) = D(y) = [−127, 127]. A standard propagation step will deduce that
x’s domain can be narrowed to [− 253

2 , 255
2], that is, to [−126, 127]. Using this infor-

mation, y’s domain can now be narrowed to [−126, 126]. This allows x to be further
narrowed, and so on. The unsatisfiability of the constraint will eventually be discov-
ered, but only after very many propagation steps. (Bit-level reasoning can establish
the unsatisfiability of 2x + 2y = 1 easily.) Leconte and Berstel [2006] propose the in-
clusion of arithmetical congruence constraints in the constraint propagation approach,
effectively obtaining a CSP analogue of the RIC domain discussed in Section 9.4, by

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:31

utilizing the analysis of Granger [1989] to develop propagators. This leads to much
faster propagation overall.

Bardin et al. [2010] take the ideas of Leconte and Berstel [2006] a step further, by
adding a bit-vector solver with propagators for what they call the bitlist domain, BL.
An element of this domain is a set of w-width bit-vectors. The set has to be convex
in the sense that it can be written as a single bit-vector, with an asterisk denoting
an unknown bit. For example, 〈0∗1∗〉 denotes the set {0010, 0011, 0110, 0111}.5 (Only
certain sets of cardinality 2k can be expressed this way. Most integer intervals cannot
be expressed in this manner, and sets that can be expressed as partial bit vectors
are not, in general, intervals. For example, 〈0∗1∗〉 = {2, 3, 6, 7}. This is not an issue
for Bardin et al. [2010], as the BL information is meant to complement interval, and
congruence, information.) The aim is to combine reasoning about arithmetic operations
using the interval/congruence propagation machinery, with reasoning about certain bit-
twiddling operations using BL. A domain of each type is associated with each variable
and maintained.6 “Channeling” between the different domains is done by propagators
specifically defined for the purpose. There is no description of how multiplication and
division are handled.

Michel and Van Hentenryck [2012] utilize a domain that is isomorphic to the BL
domain of Bardin et al. [2010]. They give algorithms for the bitwise operations, the
comparisons, shifting, and addition, providing better propagation for the latter com-
pared with Bardin et al. [2010]. Michel and Van Hentenryck [2012] focus on bit vectors
that are shorter than the underlying machine’s bit-width, thus can be implemented
efficiently using data-parallel machine instructions. They do not give experimental
results, nor do they discuss nonlinear arithmetic operations.

To summarize, all the approaches based on bit-level and/or word-level constraint
propagation discussed in this section are incomparable with our analysis. From a
constraint reasoning viewpoint, the constraints that we use are simple, “independent
attribute” constraints that express membership of an interval. The solvers discussed
in this section can reason with more sophisticated properties, including relations that
go beyond the “independent attribute” kind.

10. CONCLUSION

Integer arithmetic is a crucial component of most software. However, “machine inte-
gers” are a subset of the integers we learned about in school. The dominant use of
integers in computers allows only a fixed amount of space for an integer; therefore, not
every integer can be represented. Instead, we get fixed-width integer arithmetic and
its idiosyncrasies.

Much of the existing work on interval analysis uses arbitrary precision integers as
bounds. Using such an analysis with programs that manipulate fixed-width integers
can lead to unsound conclusions. We have presented wrapped intervals, an alternative
to the classical interval domain. Our use of wrapped intervals ensures soundness
without undue loss of precision and for a relatively small cost, as we demonstrated in
Section 6.

The key is to treat the bounds as bit patterns, letting a wrapped interval denote the
set of bit patterns beginning with the left bound and repeatedly incrementing it until
the right bound is reached. Wrapped intervals can therefore represent sets that cannot
be represented with ordinary intervals, because they “wrap around.” For example, a
wrapped interval beginning with the largest representable integer and ending with
the smallest denotes the set of only those two values.

5Additionally, Bardin et al. [2010] allows the expression of the empty set of bit-vectors.
6More precisely, a set of unsigned integer intervals is maintained per variable.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:32 G. Gange et al.

Viewing integers as bit patterns, the analysis is indifferent to the signedness of the
integers, except when relevant to the results being produced. This is ideal for analysis
of low-level languages such as assembly language and LLVM IR, as these languages
treat fixed-width integers as bit strings; only the operations that behave differently
in the signed and unsigned cases come in two versions. While it is possible to analyze
programs correctly under the assumption that all integer values should be interpreted
as unsigned (or signed, depending on taste), such an assumption leads to a significant
loss of precision.

It is far better for analysis to be signedness-agnostic. We have shown that, if imple-
mented carefully, signedness-agnosticism amounts to more than simply “having a bet
each way.” Our key observation is that one can achieve higher precision of analysis by
making each individual abstract operation signedness-agnostic, whenever its concrete
counterpart is signedness-agnostic. This applies to important operations like addition,
subtraction, and multiplication.

Signedness-agnostic bounds analysis naturally leads to wrapped intervals, since
signed and unsigned representation correspond to two different ways of ordering bit
vectors. In this article, we have detailed a signedness-agnostic bounds analysis, based
on wrapped intervals. The resulting analysis is efficient and precise. It is beneficial
even for programs for which all signedness information is present.

We have observed that the wrapped interval domain is not a lattice. To compensate,
we have presented over- and under-approximations of join and meet. However, these
approximations lack some of the properties we expect of joins and meets: they are
neither associative nor monotone. The lack of associativity means that repeated joins
and meets are not a substitute for variadic least upper bound and greatest lower bound
operations. We therefore have presented both over- and under-approximating variadic
least upper bound and greatest lower bound operations. These are generally more
precise than repeated approximate binary joins and meets, irrespective of the order in
which the binary operations are applied [Gange et al. 2013a].

The lack of monotonicity of meets and joins means that classical fixed point finding
methods may fail to terminate. We have presented a widening operator that ensures
monotonicity, as well as accelerating convergence. The widening strategy is based on
the idea of doubling the size of intervals in each widening step. Gange et al. [2013a]
discuss, in more general terms, the issues that arise from the use of nonlattice domains
(such as the domain of wrapped intervals) in abstract interpretation.

In future work, we plan to extend our tools to support interprocedural analysis using
wrapped intervals, and also investigate the combination of wrapped intervals with
pointer analyses to improve precision.

A worthwhile line of future research is to find ways of generalizing wrapped interval
analysis to relational analyses, such as those using octagons [Miné 2006]. To this end,
Gange et al. [2013b] study the case of difference logic (constraints x − y ≤ k) and
find that classical approaches such as the Bellman-Ford algorithm cannot readily be
adapted to the setting of modular arithmetic. It appears that much of the large body of
work on algorithms for relational analysis requires thorough review through the lenses
of machine arithmetic.

ACKNOWLEDGMENTS

We would like to thank John Regehr, Jie Liu, Douglas Teixeira and Fernando Pereira for helpful discussions
about interval analysis and LLVM.

REFERENCES

Gogul Balakrishnan. 2007. WYSINWYX: What You See Is Not What You Execute. Ph.D. Dissertation. Uni-
versity of Wisconsin at Madison, Madison, WI.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

Interval Analysis and Machine Arithmetic 1:33

Gogul Balakrishnan and Thomas Reps. 2004. Analyzing memory accesses in x86 executables. In Compiler
Construction: Proceedings of the 13th International Conference, E. Duesterwald (Ed.). Lecture Notes in
Computer Science, Vol. 2985. Springer, 5–23.

Sébastien Bardin, Philippe Herrmann, and Florian Perroud. 2010. An alternative to SAT-based approaches
for bit-vectors. In Proceedings of the 16th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’10), J. Esparza and R. Majumdar (Eds.). Lecture Notes
in Computer Science, Vol. 6015. Springer, 84–98.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. 2002. Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. In The Essence of Computation: Complexity,
Analysis, Transformation, T. Æ. Mogensen, D. A. Schmidt, and I. H. Sudborough (Eds.). Lecture Notes
in Computer Science, Vol. 2566. Springer, 85–108.

Sandrine Blazy, Vincent Laporte, Andre Maroneze, and David Pichardie. 2013. Formal verification of a C
value analysis based on abstract interpretation. In Static Analysis, F. Logozzo and M. Fähndrich (Eds.).
Lecture Notes in Computer Science, Vol. 7935. Springer, 324–344.

Jörg Brauer and Andy King. 2010. Automatic abstraction for intervals using boolean formulae. In Static
Analysis, R. Cousot and M. Martel (Eds.). Lecture Notes in Computer Science, Vol. 6337. Springer,
167–183.

Zack Coker and Munawar Hafiz. 2013. Program transformations to fix C integers. In Proceedings of the 35th
International Conference on Software Engineering (ICSE’13). IEEE, 792–801.

Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and Westley Weimer. 2003. CCured in
the real world. In Proceedings of ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation (PLDI’03). ACM, New York, NY, 232–244.

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM Symposium
on Principles of Programming Languages. ACM, New York, NY, 238–252.

Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In Proceedings
of the Sixth ACM Symposium on Principles of Programming Languages. ACM, New York, NY, 269–
282.

Patrick Cousot and Radhia Cousot. 1992. Comparing the Galois connection and widening/narrowing ap-
proaches to abstract interpretation. In Proceedings of the International Symposium on Programming
Language Implementation and Logic Programming, M. Bruynooghe and M. Wirsing (Eds.). Lecture
Notes in Computer Science, Vol. 631. Springer, 269–295.

Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2012. Understanding integer overflow in C/C++. In
Proceedings of the 34th International Conference on Software Engineering. IEEE, 760–770.

Manuel Fähndrich and Francesco Logozzo. 2010. Static contract checking with abstract interpretation. In
FoVeOSS, B. Beckert and C. Marché (Eds.). Lecture Notes in Computer Science, Vol. 6528. Springer,
10–30.

Stephan Falke, Deepak Kapur, and Carsten Sinz. 2012. Termination analysis of imperative programs using
bitvector arithmetic. In Verified Software: Theories, Tools, and Experiments, R. Joshi, P. Müller, and A.
Podelski (Eds.). Lecture Notes in Computer Science, Vol. 7152. Springer, 261–277.

Stephan Falke, Florian Merz, and Carsten Sinz. 2013. LLBNC: Improved bounded model checking of C pro-
grams using LLVM. In Tools and Algorithms for the Construction and Analysis of Systems, N. Piterman
and S. Smolka (Eds.). Lecture Notes in Computer Science, Vol. 7795. Springer, 623–626.

Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2013a. Abstract
interpretation over non-lattice abstract domains. In Static Analysis, F. Logozzo and M. Fähndrich (Eds.).
Lecture Notes in Computer Science, Vol. 7935. Springer, 6–24.

Graeme Gange, Harald Søndergaard, Peter J. Stuckey, and Peter Schachte. 2013b. Solving difference con-
straints over modular arithmetic. In Automated Deduction, M. Bonacina (Ed.). Lecture Notes in Artificial
Intelligence, Vol. 7898. Springer, 215–230.

Thomas Gawlitza, Jérôme Leroux, Jan Reineke, Helmut Seidl, Grégoire Sutre, and Reinhard Wilhelm.
2009. Polynomial precise interval analysis revisited. In Efficient Algorithms: Essays Dedicated to Kurt
Mehlhorn on the Occasion of His 60th Birthday, S. Albers, H. Alt, and S. Näher (Eds.). Lecture Notes in
Computer Science, Vol. 5760. Springer, 422–437.

Arnaud Gotlieb, Michel Leconte, and Bruno Marre. 2010. Constraint solving on modular integers. In Pro-
ceedings of the Ninth International Workshop on Constraint Modelling and Reformulation (ModRef’10).

Philippe Granger. 1989. Static analysis of arithmetical congruences. International Journal of Computer
Mathematics 30 (1989), 165–190.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

1:34 G. Gange et al.

Philippe Granger. 1991. Static analyses of linear congruence equalities among variables of a program. In
Theory and Practice of Software Development. Lecture Notes in Computer Science, Vol. 493. Springer,
167–192.

Andy King and Harald Søndergaard. 2010. Automatic abstraction for congruences. In Verification, Model
Checking and Abstract Interpretation, G. Barthe and M. Hermenegildo (Eds.). Lecture Notes in Computer
Science, Vol. 5944. Springer, 197–213.

Michel Leconte and Bruno Berstel. 2006. Extending a CP solver with congruences as domains for pro-
gram verification. In Proceedings of the 1st Workshop on Software Testing, Verification and Analysis
(CSTVA’06), B. Blanc, A. Gotlieb, and C. Michel (Eds.). 22–33.

Jérôme Leroux and Grégoire Sutre. 2007. Accelerated data-flow analysis. In Static Analysis, H. Riis Nielson
and G. Filé (Eds.). Lecture Notes in Computer Science, Vol. 4634. Springer, 184–199.

Francesco Logozzo and Matthieu Martel. 2013. Automatic repair of overflowing expressions with abstract
interpretation. In Semantics, Abstract Interpretation, and Reasoning about Programs, A. Banerjee,
O. Danvy, K.-G. Doh, and J. Hatcliff (Eds.). Electronic Proceedings in Theoretical Computer Science,
Vol. 129. 341–357.

Kim Marriott and Peter J. Stuckey. 1998. Programming with Constraints: An Introduction. MIT Press,
Cambridge, MA.

Laurant D. Michel and Pascal Van Hentenryck. 2012. Constraint satisfaction over bit-vectors. In Constraint
Programming: Proceedings of the 2012 Conference, M. Milano (Ed.). Lecture Notes in Computer Science,
Vol. 7514. Springer, 527–543.

Antoine Miné. 2006. The octagon abstract domain. Higher-Order and Symbolic Computation 19, 1, 31–
100.

Tsuneo Nakanishi, Kazuki Joe, Constantine D. Polychronopoulos, and Akira Fukuda. 1999. The modulo
interval: A simple and practical representation for program analysis. In Parallel Architecture and Com-
pilation Techniques. IEEE, 91–96. DOI:http://dx.doi.org/10.1109/PACT.1999.807422

Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2012. Signedness-agnostic pro-
gram analysis: Precise integer bounds for low-level code. In Proceedings of the 10th Asian Symposium
on Programming Languages and Systems (APLAS’12), R. Jhala and A. Igarashi (Eds.). Lecture Notes
in Computer Science, Vol. 7705. Springer, 115–130.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of Program Analysis. Springer,
New York, NY.

John Regehr and Usit Duongsaa. 2006. Deriving abstract transfer functions for analyzing embedded soft-
ware. In Proceedings of the 2006 SIGPLAN/SIGBED Conference on Language, Compilers, and Tool
Support for Embedded Systems (LCTES’06). ACM Press, 34–43.

Thomas Reps, Gogul Balakrishnan, and Junghee Lim. 2006. Intermediate-representation recovery from low-
level code. In Proceedings of the 2006 ACM SIGPLAN Conference on Partial Evaluation and Semantics-
Based Program Manipulation. ACM Press, New York, NY, 100–111.

Raphael E. Rodrigues, Victor H. Sperle Campos, and Fernando M. Quintão Pereira. 2013. A fast and low-
overhead technique to secure programs against integer overflows. In Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO’13). IEEE, 1–11.

Helmut Seidl, Reinhard Wilhelm, and Sebastian Hack. 2012. Compiler Design: Analysis and Transformation.
Springer.

Rathijit Sen and Y. N. Srikant. 2007. Executable analysis using abstract interpretation with circular linear
progressions. In Proceedings of the Fifth IEEE/ACM International Conference on Formal Methods and
Models for Codesign. IEEE, 39–48.

Axel Simon and Andy King. 2007. Taming the wrapping of integer arithmetic. In Static Analysis, H. Riis
Nielson and G. Filé (Eds.). Lecture Notes in Computer Science, Vol. 4634. Springer, 121–136.

Zhendong Su and David Wagner. 2004. A class of polynomially solvable range constraints for interval anal-
ysis without widenings and narrowings. In Tools and Algorithms for the Construction and Analysis of
Systems, K. Jensen and A. Podelski (Eds.). Lecture Notes in Computer Science, Vol. 2988. Springer,
280–295.

Douglas D. C. Teixera and Fernando M. Q. Pereira. 2011. The design and implementation of a non-iterative
range analysis algorithm on a production compiler. In Proceedings of the 2011 Brazilian Symposium on
Programming Languages.

Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. 2013. Towards optimization-
safe systems: Analyzing the impact of undefined behavior. In Proceedings of the 24th ACM Symposium
on Operating Systems Principles. ACM, New York, NY, 260–275.

Henry S. Warren Jr. 2003. Hacker’s Delight. Addison Wesley, New York, NY.

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

http://dx.doi.org/10.1109/PACT.1999.807422

Interval Analysis and Machine Arithmetic 1:35

Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou. 2010. IntPatch: Automatically fix integer-overflow-
to-buffer-overflow vulnerability at compile-time. In Computer Security – ESORICS 2010, D. Gritzalis,
B. Preneel, and M. Theoharidou (Eds.). Lecture Notes in Computer Science, Vol. 6345. Springer, 71–86.

Chao Zhang, Wei Zou, Tielei Wang, Yu Chen, and Tao Wei. 2011. Using type analysis in compiler to mitigate
integer-overflow-to-buffer-overflow threat. Journal of Computer Security 19, 6, 1083–1107.

Received July 2013; revised March 2014; accepted July 2014

ACM Transactions on Programming Languages and Systems, Vol. 37, No. 1, Article 1, Publication date: January 2015.

