
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

A Fresh Look at Zones and Octagons

GRAEME GANGE,Monash University, Australia
ZEQUN MA, The University of Melbourne, Australia
JORGE A. NAVAS, SRI International, USA
PETER SCHACHTE, The University of Melbourne, Australia
HARALD SØNDERGAARD, The University of Melbourne, Australia
PETER J. STUCKEY,Monash University, Australia

Zones and Octagons are popular abstract domains for static program analysis. They enable the automated
discovery of simple numerical relations that hold between pairs of program variables. Both domains are
well understood mathematically but the detailed implementation of static analyses based on these domains
poses many interesting algorithmic challenges. In this paper we study the two abstract domains, their
implementation and use. Utilizing improved data structures and algorithms for the manipulation of graphs
that represent difference-bound constraints, we present fast implementations of both abstract domains, built
around a common infrastructure. We compare the performance of these implementations against alternative
approaches offering the same precision. We quantify the differences in performance by measuring their speed
and precision on standard benchmarks. We also assess, in the context of software verification, the extent to
which the improved precision translates to better verification outcomes. Experiments demonstrate that our
new implementations improve the state-of-the-art for both Zones and Octagons significantly.

CCS Concepts: • Theory of computation→ Program analysis; Program verification; Logic and verification;
Abstraction;

Additional KeyWords and Phrases: Abstract interpretation, shortest path algorithms, difference-bounds matrix,
numerical abstract domains, program analysis, static analysis, variable packing, weakly relational domains

ACM Reference Format:
Graeme Gange, Zequn Ma, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2021. A
Fresh Look at Zones and Octagons. ACM Trans. Program. Lang. Syst. 1, 1, Article 1 (January 2021), 51 pages.
https://doi.org/10.1145/3457885

1 INTRODUCTION
Static program analysis serves many important purposes, including compiler optimisation and pro-
gram verification. Abstract interpretation allows program invariants over any number of different
domains to be inferred, which may allow a compiler to generate more efficient executable code, or

Authors’ addresses: Graeme Gange, Monash University, Faculty of IT, Clayton, 3800, Vic. Australia, graeme.gange@monash.
edu; Zequn Ma, The University of Melbourne, School of Computing and Information Systems, Parkville, 3010, Vic. Australia,
zequnm@student.unimelb.edu.au; Jorge A. Navas, SRI International, Computer Science Laboratory, Menlo Park, 94025-3493,
CA, USA, jorge.navas@sri.com; Peter Schachte, The University of Melbourne, School of Computing and Information Systems,
Parkville, 3010, Vic. Australia, schachte@unimelb.edu.au; Harald Søndergaard, The University of Melbourne, School of
Computing and Information Systems, Parkville, 3010, Vic. Australia, harald@unimelb.edu.au; Peter J. Stuckey, Monash
University, Faculty of IT, Clayton, 3800, Vic. Australia, peter.stuckey@monash.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0164-0925/2021/1-ART1 $15.00
https://doi.org/10.1145/3457885

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3457885
https://doi.org/10.1145/3457885

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Gange et al.

may allow a tool to assure the programmer that certain undesirable runtime conditions cannot
arise.
For example, an analysis may determine upper or lower bounds on integer valued program

variables—bounds that apply every time execution arrives at a given point in the program. Such an
interval analysis is an example of an independent attribute analysis, so called because each program
variable is ascribed a value independently of the rest. An alternative analysis might determine
upper and lower bounds on the difference between program variables at each program point. This
is a relational analysis, because it relates the possible values of variables to one another.
Generally, a relational analysis provides finer grained information about the possible runtime

states, compared to an independent attribute analysis, but is typically much more expensive. For
example, an analysis determining bounds on individual variables produce data proportional to the
number of variables at each program point, while one that determines bounds on the difference
between pairs of variables can produce data quadratic in the number of variables.

In principle, very fine grained relational abstract domains are attractive. In practice, however, the
computational cost of analysis using domains such as the highly precise polyhedral domain [19] is
prohibitive. Miné’s development of the Zones and Octagons abstract domains [47–50] was driven
by the desire to allow a static analysis tool to reason about relational information without incurring
a substantial cost. Miné referred to these cheaper abstract domains as weakly relational. The Zones
and Octagons domains limit expressiveness to strike a better compromise between precision and
computational cost. They limit the possible coefficients that can be used in equations and they
relate only pairs of variables, rather than arbitrary tuples. The resulting static analyses had a great
impact on practice, as they were made publicly available in open-source libraries such as Apron [36]
and PPL [4].

Several other abstract domains have been proposed that fit in the category of weakly relational
domains [43, 62]. The theory of weakly relational abstract domains is well developed, and the
corresponding analyses have been implemented and re-implemented several times. Nevertheless,
these technologies have hardly reached maturity, and scalability remains a challenge. We should
expect considerable scope for algorithmic advances, because a relational static analyzer is a complex
tool with many interacting parts that call for balance and tuning. While the analyses usually
utilise well-studied graph algorithms (for shortest-path problems), the application to static analysis
poses its own unique challenges. Some of the necessary operations (lattice-theoretic “join” and
“widening”) have no natural counterparts in other applications of data structures and algorithms
for shortest-path problems. These operations tend to complicate matters and call for application
specific solutions. Moreover, typical static analysis workflows display commonly occurring patterns
and a great deal of structure to be exploited. For example, we may be able to exploit knowledge of
which analysis operations are more frequent, which normally precede which, and so on. We can
also utilise what is known about typical analysis runs: That the generated relations are often quite
sparse, that variables tend to settle into disjoint clusters, and that many operations in the analysis
change only a small subset of the overall set of relations.

Indeed, attempts have been made to take advantage of such patterns and properties. To capitalise
on the fact that most pairs of variables are unrelated at most program points (so that maintaining
information about every pair is needlessly wasteful), it has been proposed to use variable packing,
identifying groups of variables that might be related. Then independent abstractions can be kept
for the separate packs. There are various approaches to determining the packs statically, before
beginning the analysis (e.g., [8]), or dynamically, as the analysis progresses [59, 61]. Singh et
al. [58] have combined dynamic partitioning with implementation techniques tailored to make
use of vectorization. This has resulted in an implementation of an “optimized” Octagons domain
in the ELINA library [23], OptOctagon, which is considerably faster than the classical Apron

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

A Fresh Look at Zones and Octagons 1:3

int k = 200;
int n = 100;
int x = 0, y = k;

while (x < n) {
x++;
y = k + 2*x;
}
assert (y - x >= k);

int k = 200;
int n = 100;
int x = 0, y = k;

while (x < n) {
x++;
y = k - 2*x;
}
assert (x + y <= k);

(a) (b)

Fig. 1. Code snippets to analyze.

implementation [36]. We return to these approaches in Sections 8 and 9 when we compare the
state-of-the-art with our own implementation.

We have previously [28] pointed out that the standard implementations of Zones and Octagons
fail to utilize the inherent sparsity of the relations involved. This happens because unnecessary
density is introduced with the standard graph representations of difference constraints. In response,
we developed algorithms based on a “split normal form” for these graphs [28]. Independently, Jour-
dan [39] proposed a collection of sparsity-preserving algorithms to be utilized in implementations
of the Octagons domain.

An analysis using Zones allows for runtime state descriptions of the form x −y ≤ k (where x and
y are program variables and k is a constant), as well as descriptions of form x ≤ k and x ≥ k . (We
can express conjunctions of these forms, so, for example, x = k can also readily be expressed.) The
Octagons domain extends Zones also to allow descriptions of the form x + y ≤ k and −x − y ≤ k ;
we shall return to Octagons in Sections 6 and 7, but focus mainly on Zones for now.

For technical reasons it turns out to be advantageous to keep the constraints of form x − y ≤ k
closed under “tight” entailment, This includes a closure principle to maintain “triangle inequalities”,
so that, for example, a set {x−y ≤ k1,y−z ≤ k2} is extended to {x−y ≤ k1,y−z ≤ k2, x−z ≤ k1+k2}.
Moreover, a constraint set such as {x − y ≤ k1, x − y ≤ k2} is replaced by {x − y ≤ min(k1,k2)}
(the tightness principle). Finally, traditional implementations extend a set such as {x ≥ k1,y ≤ k2}
to also include the entailed difference bound constraint y − x ≤ k2 − k1.
As we shall see in Section 2.2, the constraint sets are conveniently represented as weighted

directed graphs, with closure under tight entailment translating to shortest-path calculations, thus
allowing the use of well-known graph algorithms. Since the graph that expresses how variables
are related in a typical program tends to be sparse, we would prefer a representation that favours
sparse graphs.
For an intuition of where unnecessary density comes from, consider the C code snippet in

Figure 1(a). An analysis using Zones can successfully deduce invariants such as 1 ≤ x ≤ 100, 202 ≤

y ≤ 2x + 200 (at the end of the body of Figure 1(a)’s while loop). In a traditional implementation the
appearance of a constraint such as k = 200 immediately leads to a large number of other constraints
(edges) being introduced as a consequence. Namely, for each variable v (other than k), the implied
constraint k − v ≤ 200 − vlo should be added, if a lower bound vlo for v can be deduced from
the current state of affairs. Similarly, v − k ≤ vhi − 200 should be added, if an upper bound vhi
can be deduced. If a program withm variables starts out by initialising those variables, we have
immediately created O(m2) constraints (in fact we have created a complete graph), even though no
interesting relations have been created among them variables. For the example of Figure 1(a), every

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Gange et al.

pair of variables gives rise to two constraints, but most of these (such as the relations between
k and n) are quite shallow, as they are immediate from the fact that the variables are fixed. Our
observation is that there is no good reason to waste space on constraints that are shallow in this
sense. The example program in Figure 1(b) illustrates that the same observation applies to Octagons
analysis.

In this paper we describe, in detail, algorithms for Zones and Octagons based on carefully crafted
sparse-graph representations. Our experimental evaluation shows a clear improvement, compared
to other contemporary implementations. Our paper builds on our earlier work [28]. In that paper
we discussed only the case of Zones and we:

• introduced new data structures and algorithms, based on refined shortest-path graph algo-
rithms, including a specialised incremental variant of Dijkstra’s algorithm;

• proposed a graph representation that used “sparse sets” [9], tailored for efficient implementa-
tion of Zones;

• proposed the split normal form for weighted digraphs, with the aim of preserving many
essential closure properties while avoiding unnecessary “densification” of graphs.

Many details were excluded owing to space limitations, and explanations were brief. In the present
paper, we revisit those algorithms, and we extend our ideas to the implementation of Octagons.
We provide complete sets of (improved) algorithms for better implementation of both domains,
including better widening operators. We provide more explanation and examples, relative to the
exposition by Gange et al. [28]. Importantly, we conduct a comprehensive experimental evaluation
of the implementations, to determine the effect on speed and precision. We extend the comparison
to also explore the effect of using variable packing as a conjunct to the analysis.

Implementations (including source code) are available as part of the Crab abstract interpretation-
based framework [21]. A shared platform allows us to perform two important kinds of comparison:
First, using standard sets of benchmarks, we compare our analysis tool against ELINA [58], the
state-of-the-art implementation of Zones and Octagons. Second, we compare, in an equitable setting,
the relative advantages of Zones and Octagons for the purpose of program verification. Specifically
we assess the trade-off involved in choosing between the two: performance, precision, and the
degree to which greater precision translates to higher success rates in program verification tasks.
The paper is structured as follows. Section 2 covers concepts and definitions that will be used

later in the paper. Section 3 is a study of the Zones abstract domain, with detailed algorithms of the
required abstract operations. These rest on classical shortest-path algorithms, but we provide a
number of improvements that take advantage of the particular application (abstract interpretation).
In Section 4 we consider the desirable case of sparse graphs and consider data structures that
can capitalise on sparsity. At first this may seem irrelevant for the application, because program
analysis using the Zones domain tends to operate with dense graphs. However, in Section 5 we
show that this is a situation that can be rectified. We introduce a new representation (split normal
form) that makes Zones analysis consume fewer space and time resources. Section 6 extends the
study to the Octagons abstract domain, and in Section 7 we show how similar sparsity-preserving
algorithmic improvements can be applied to the Octagons domain. Section 8 gives an account of
various experimental evaluations we have made. Section 9 puts our contribution in the context of
related work, and Section 10 concludes.
We assume the reader is familiar with order theory and concepts from the field of abstract

interpretation [17, 18]. We also assume familiarity with basic graph concepts and algorithms,
including the classical shortest-path algorithms [15].

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

A Fresh Look at Zones and Octagons 1:5

Table 1. Glossary of notation.

x
k
−→y Edge from x to y with weight k

wtE (x1, . . . , xk) Weight of path x1 → x2 → . . .→ xk in E, ∞ if no such path exists.
E(x) Set of edges in E emanating from x
incidE (x) Set of edges in E incident on x
E1{⊕, ⊗}E2 Pointwise max/min over edge weights
E1 ⊟ E2 Symmetric difference of E1 and E2
rev(E) Graph E with all edges reversed
E \ {v} Graph E excluding (all edges incident to) vertex v

2 PRELIMINARIES
2.1 Digraph Operations
Table 1 provides a glossary of notation that we use. Much of what follows deals with operations on
weighted directed graphs.

We let x
k
−→y denote a directed edge from x to y with weight k . We think of a graph simply as

the set E of its edges, tacitly assuming a fixed set V of vertices for all graphs.1 wtE (x,y) denotes
the weight of the edge x −→y in E (or∞ if the edge is absent). More precisely,2

wtE (x,y) =


0 if x = y
k if x

k
−→y ∈ E (and x , y)

∞ otherwise

This is generalized to a directed path x1 → . . .→ xk as wtE (x1, . . . , xk) =
∑k−1

i=1 wtE (xi , xi+1).
When we take the union of two sets of edges E1 and E2, we take only the minimum-weight edge

for each pair of end-points.
We let E1 ⊕ E2 and E1 ⊗ E2 denote the pointwise maximum and minimum over a pair of graphs,

and we let E1 ⊟ E2 denote the symmetric difference. That is:

E1 ⊕ E2 =
{
x

max(k1,k2)
−−−−−−−−→y

�� x k1
−→y ∈ E1, x

k2
−→y ∈ E2

}
E1 ⊗ E2 =

{
x

k
−→y

�� x k
−→y ∈ E1, k ≤ wtE2 (x,y)

}
∪
{
x

k
−→y

�� x k
−→y ∈ E2, k < wtE1 (x,y)

}
E1 ⊟ E2 = (E1 ⊗ E2) \ (E1 ⊕ E2)

Example 2.1. Let E1 = {x
3
−→ y,y

5
−→ z} and let E2 = {x

7
−→ y,y

5
−→ z, z

0
−→ y}. Then we have

E1 ⊕ E2 = {x
7
−→y,y

5
−→z}, E1 ⊗ E2 = {x

3
−→y,y

5
−→z, z

0
−→y}, and E1 ⊟ E2 = {x

3
−→y, z

0
−→y}. □

In several cases, it will be useful to operate on a transformed view of a graph. rev(E) denotes the
graph obtained by reversing the direction of each edge in E (so x

k
−→y becomes y

k
−→x). incidE (v) is

the set of edges in E which are incident on v . We use E \ {v} as a shorthand for E \ incidE (v), the
graph obtained by removing from E every edge involving v . E \ E ′ is the graph obtained from E by
deleting all edges in E ′. These are simply mathematical definitions; in our implementations these

1This is for presentation purposes only. In practice, it is unnecessarily expensive—we instead maintain vertices only for
in-scope variables and add or remove vertices as needed.
2The definition of wtE is mainly for presentational purposes; in practice no edge of form (x , x) is ever constructed, no edge
will have weight ∞ (rather it will be absent), and there will be at most one weighted edge (x , y) in E .

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Gange et al.

x

yz

-4
9

-7

8

v0

x

yz

10

2

-1

-3

v0

x

yz

01

1

0

3

π (v0) = 2

π (x) = 3

π (y) = 3π (z) = 9

(a) (b) (c)

Fig. 2. (a) Difference constraints in graphical form. (b) Constraint graph representing the difference constraints
{x ∈ [0, 1],y ∈ [1, 2],y − z ≤ −3}. (c) The slack graph (with all non-negative weights) under potential function
π = {v0 7→ 2, x 7→ 3,y 7→ 3, z 7→ 9}.

graphs are never explicitly constructed—they merely define different interpretations of an existing
graph, and we implement the symmetric difference operator ⊟ directly, rather than via ⊕ and ⊗.

2.2 Difference Constraints and Weighted Digraphs
A difference constraint is of the form x − y ≤ k , where k is a constant and x and y are variables
that range over a numerical domain D (R, Q or Z). Note that a constraint of the form x − y ≥ k
can be translated to the ≤ form: y − x ≤ −k . A difference constraint system is a conjunction of
primitive difference constraints, often represented as a set of constraints. Clearly constraints of
form x − y = k can be expressed as difference constraint systems. For cases where variables range
over Z, we can also map strict inequality to this form. For example, y − x < k is equivalent to
y − x ≤ k − 1. For non-integer domains we usually weaken the strict inequality to be non-strict, for
example, y − x < k is weakened to y − x ≤ k .

Difference constraint systems3 are conveniently represented as weighted directed graphs, with
an edge x

k
−→y (that is, wtE (x,y) = k) for each constraint y − x ≤ k . If E satisfies the “triangle”

inequality
wtE (x, z) ≤ wtE (x,y) + wtE (y, z) for all x,y, z ∈ V (1)

then we say that E is tr-closed.
It is not hard to see that a difference constraint system has a solution if and only if the corre-

sponding digraph contains no negative-weight cycle. Also note that if the assignment σ of values to
variables v ∈ V satisfies a difference constraint system, then so do the infinitely many assignments
of form {v 7→ σ (v) + δ } for any constant δ .

Example 2.2. Figure 2(a) captures the system {x − y ≥ 4, 7 ≤ y − z ≤ 8, x − z ≤ 9}. The negative
weight of the cycle x → y → z → x shows the set of constraints is unsatisfiable. □

2.3 Solving Difference Constraints
Let C be a set of difference constraints and let E be a weighted digraph. Define

graph(C) =
{
x

k
−→y

�� y − x ≤ k is a constraint in C
}

Say that C bounds y − x iff
(1) C is satisfiable, and

3For brevity we may drop ‘systems’ when it does not introduce ambiguity.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

A Fresh Look at Zones and Octagons 1:7

(2) C |= y − x ≤ k for some k ∈ D.
Let k ∈ D. We say that C k-bounds y − x iff
(1) C bounds y − x ,
(2) C |= y − x ≤ k , and
(3) for all k ′ ∈ D, if C |= y − x ≤ k ′ then k ≤ k ′.

Finally, for a set C of difference constraints, define
consequences(C) =

{
y − x ≤ k

�� C k-bounds y − x
}

and let tr-close be the function that takes a weighted digraph and computes its all-pairs shortest
paths. Then for satisfiable C

graph(consequences(C)) = tr-close(graph(C)).
That is, if C is satisfiable then C’s closure under tight entailment can be determined by well
understood graph algorithms. If we take the graph graph(C) for a constraint system C and extend
that graph with a fresh vertex v0, together with an edge v0

0
−→v for each v ∈ V , then we have the

constraint graph for C [15]. In the constraint graph, every vertex v ∈ V is reachable from a single
vertex, namely v0. Determining whetherC has a feasible solution comes down to checking whether
its constraint graph has a negative-weight cycle, and in the absence of such cycles, a solution to
C can be found by solving the shortest-path problem for the graph, taking v0 as the source. The
Bellman-Ford algorithm [7, 26] determines feasibility and calculates single-source shortest paths
(that is, tight entailment) in time O(|V | |E |), where V is the set of vertices and E is the set of edges.

In many uses of difference constraints we also want to allow unary constraints, that is, constraints
of the form x ≤ k and x ≥ k . Fortunately, all that is needed for this extension is to utilise the extra
vertex v0 appropriately. We simply assume that v0 is a “variable” constrained to take the value 0.
This way, an edge v0

k
−→x represents the constraint x ≤ k , and x

k
−→v0 represents x ≥ −k . We shall

refer to such constraints/edges as “bounds constraints” or “bounds relations”, and those for proper
differences y − x as “binary constraints” or “binary relations”.

Example 2.3. Consider the system of constraints {x ∈ [0, 1],y ∈ [1, 2],y − z ≤ −3}. The corre-
sponding constraint graph is shown in Figure 2(b). Note that interval constraints x ∈ [lo, hi] are
encoded as edges v0

hi
−→x and x

−lo
−−→v0. □

The extension to constraint graphs does not affect how closure under tight entailment can be
derived. For example, the constraintsu ≤ 4 andv ≥ 3 are represented asu−v0 ≤ 4 andv0−v ≤ −3,
from which we derive u −v0 +v0 −v ≤ 4 − 3, that is, u −v ≤ 1. Note that this simply uses (1) with
y = v0.

Dijkstra’s algorithm for the single-source shortest path problem is an efficient greedy algorithm,
but it does not work in the presence of negative weights. Note that there is no simple reduction of
the shortest-path problem for graphs with negative weights to the more tractable positive-weight
problem. For example, identifying the smallest negative weightw in the graphs and addingw to all
weights is not a valid reduction. However, Nemhauser [51] discovered a reduction that utilises a
certain mapping from vertices to values. We call this type of mapping a potential function4.

If the mapping is a model, that is, if it assigns values to vertices in such a way that the constraints
represented by the graph are satisfied, then we refer to it as a valid potential function.
A valid potential function allows one to translate a graph G into a version G ′ that has non-

negative weights only, while preserving shortest paths. This is useful, because it means Dijkstra’s
4The term is commonly used in description of certain network flow algorithms and most likely inspired by the concept of
electric potential.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Gange et al.

algorithm becomes applicable. A shortest path found forG ′ can then be translated back to a shortest
path inG , again using the potential function (we give an example shortly). This reduction is utilised
in Johnson’s shortest-path algorithm [37], which is specifically designed for the case of sparse
graphs and which uses both Dijkstra’s algorithm and Bellman-Ford as subroutines. Johnson’s
algorithm solves the all-pairs shortest path problem in time O(|V |2lg|V | + |V | |E |).

Potential functions are also used in a method for solving sparse systems of difference constraints.
Cotton and Maler [16] show that a potential function π is particularly useful in incremental
constraint solving. In constraint solving terms, π allows a constraint graph E to be reformulated:
For a constraint y − x ≤ k in E, the slack (or reduced cost [16]) is given by π (x) + k − π (y). In the
slack graph for E and π , each edge x −→y is given weight k ′ = π (x) + k − π (y). If π is a model for
the constraint set then each k ′ is non-negative, so shortest paths in the slack graph can be found
with Dijkstra’s algorithm and translated back to shortest paths in the original E.

Example 2.4. Consider again the constraints captured in the graph in Figure 2(b). Let the potential
function π = {v0 7→ 2, x 7→ 3,y 7→ 3, z 7→ 9}. This corresponds to the concrete assignment
{x 7→ 1,y 7→ 1, z 7→ 7} (as v0 is adjusted to 0). The slack graph where each weight is replaced by
its slack under π is given in Figure 2(c). As every constraint is satisfied by π , all weights in the
reformulated graph are non-negative.
If we follow the shortest path from z to y in Figure 2(c), we find the slack between z and y is 3.

We can then invert the original transformation to find the corresponding constraint; in this case,
we get y − z ≤ π (y) − π (z) + slack(z,y) = −3, which matches the original corresponding path in
Figure 2(b). □

Cotton and Maler show how to utilise and maintain π when a single difference constraint is
added to a constraint system. Whenever an edge is added, they update π to provide a model of
the augmented system (if possible—otherwise unsatisfiability is reported). The operations that we
require for the program analysis problem differ somewhat from those covered by Cotton and Maler,
but for some operations we can exploit Cotton and Maler’s idea.

2.4 Graph Representations
The usual representation of the Zones domain is in terms of difference bound matrices (DBMs). A
DBM explicitly represents a weighted graph E as a square matrix M with one row and column
for each vertex. Its entries record the weights of the edges in E. The element M[x,y] contains
k where x

k
−→ y ∈ E and ∞ otherwise except that the diagonal M[x, x] is always 0. Commonly

implementations of Zones keep this difference bound matrix tr-closed, in the sense defined above
for graphs. This makes many abstract operations for Zones very simple to define.

Example 2.5. Consider the set of difference constraints defined in Example 2.3. The corresponding
difference bound matrix is shown in Figure 3(a). The closed form of the difference bound matrix is
shown in Figure 3(b). The closed form under potential function π = {v0 7→ 2, x 7→ 3,y 7→ 3, z 7→ 9}
is shown in Figure 3(c). Note that now all entries in the matrix are non-negative. □

There are algorithms for finding a so-called transitive reduction of a directed graph [1]. Given
a graph G, a transitive reduction of G is a minimal graph G ′ (not necessarily a sub-graph of G)
such that G and G ′ have the same transitive closure. While the idea can be extended to weighted
graphs, and while it promises to promote sparsity, transitively reduced graphs are not adequate
for the program analysis problem. The reason is that operations such as lattice-theoretic join rely
on certain entailed constraints to be explicit. Implementations of Zones and Octagons therefore
traditionally operate with dense graphs. Usually the system of relations is encoded as a dense
matrix, and closure is obtained by running the Floyd-Warshall algorithm [25]. A main contribution

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

A Fresh Look at Zones and Octagons 1:9

v0 x y z
v0 0 1 2 ∞

x 0 0 ∞ ∞

y -1 ∞ 0 ∞

z ∞ ∞ -3 0

v0 x y z
v0 0 1 2 ∞

x 0 0 2 ∞

y -1 0 0 ∞

z -4 -3 -3 0

v0 x y z
v0 0 0 1 ∞

x 1 0 2 ∞

y 0 0 0 ∞

z 3 3 3 0
(a) (b) (c)

Fig. 3. Example of DBM in the Zones domain for the set of constraints of Example 2.3 in (a) raw form,
(b) closed, (c) closed wrt to potential function π = {v0 7→ 2, x 7→ 3,y 7→ 3, z 7→ 9}.

of this paper is to identify an intermediate position, namely a sparse graph representation that is
more suitable for the problem at hand.

While the worst-case time complexity for shortest-path closure may be large, the actual execution
time can be short if the constraint graph is sparse. Luckily, this is often the case, with many
instances of variables being unrelated [58]. Nevertheless, in practice, the constraint graphs tend
to be extremely dense at early iterations of analysis, with sparsity only appearing after widening.
This “phantom density” is induced by variable bounds, as discussed in the introduction. Note that
the difference relations that are merely consequences of variable bounds relations do not give any
new information to improve precision. However, they do cause the graph to become dense very
quickly. In fact, if all variables have both upper and lower bounds, the constraint graph immediately
becomes complete.

To avoid the unnecessary density and make tr-closure more efficient, we introduce, in Section 5,
Split Normal Form [28] which avoids adding bounds-induced relations. This is achieved by omitting
information of variable bounds from the graph when restoring tr-closure, then refining variable
bounds where possible.

3 ZONES
In this section we provide abstract operations for the Zones domain. The efficiency of an abstract
domain depends on how it is used. When used directly for forward analysis of a program, we
observe mostly variable assignments and additions of single constraints interspersed with joins;
meets are reasonably infrequent, as meet is used only in state transformers for function calls. Hence
we target our implementation to the more frequent operations.

For the Zones domain an abstract state φ is either ⊥ or a pair ⟨π , E⟩. In the latter case, π is a
valid potential function, and E is a sparse graph of difference constraints E over vertices V ∪ {v0}.
The intended meaning JφK of an element φ is the set of satisfying valuations:

JφK =

{
∅ if φ = ⊥{
µ ∈ V → D

�� (x k
−→y ∈ E) ⇒ (µ(v0) = 0 ∧ µ(y) − µ(x) ≤ k)

}
if φ = ⟨π , E⟩

Notice the meaning of the abstract state does not depend on the potential function π . Indeed we
could at any time compute a correct potential function from E using Bellman-Ford. But since
the focus of this paper is on efficient implementations of Zones (and Octagons) we include it, as
recomputing π is clearly inefficient.

We assume the representation of E supports cheap initialization, as well as constant time insertion,
lookup, removal and iteration; we discuss a suitable representation in Section 4.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Gange et al.

add-edge(⟨π , E⟩, e)
E ′ := E ∪ {e}
π ′ := restore-potential(π , e, E ′)
if (π ′ = inconsistent)

return ⊥

return ⟨π ′, E ′ ∪ close-edge(e, E ′)⟩

close-edge(x
k
−→y, E)

S := D := δ := ∅

for each s
k ′
−−→x ∈ E

if (k ′ + k < wtE (s,y))

δ := δ ∪ {s
k ′+k
−−−−→y}

S := S ∪ {s}

for each y
k ′
−−→d ∈ E

if (k + k ′ < wtE (y,d))

δ := δ ∪ {x
k+k ′
−−−−→d}

D := D ∪ {d}
for each (s,d) ∈ S × D

if (wtE (s, x,y,d) < wtE (s,d))

δ := δ ∪ {s
wtE (s ,x ,y,d)
−−−−−−−−−−−→d}

return δ

Fig. 4. Addition of (non-redundant) edge x
k
−→y, including restoration of closure.

3.1 Ordering
The ordering ⊑ on the abstract domain is induced by the semantic function J·K: φ ⊑ φ ′ iff JφK ⊆ Jφ ′K.
For non-⊥ elements, the test comes down to whether one set of constraints is entailed by another
set. An algorithm to decide E1 ⊑ E2 simply finds the truth value of

∀x,y ∈ V ∪ {v0}(wtE1 (x,y) ≤ wtE2 (x,y))

3.2 Variable Elimination
To eliminate a variable x , we simply remove all edges incident to x . Assuming we can remove a
specific edge in constant time, this takes worst case O(|V |) time. The result is clearly tr-closed if
the original state was tr-closed.

3.3 Constraint Addition

When adding a single edge x
k
−→y, we utilise an idea from Cotton and Maler [16]. Figure 4 shows

the details. First, we need to repair the potential function (and check for infeasibility in the process).
Then function close-edge iterates through edges incoming to x and outgoing from y to check for
updated paths across x −→ y. The function separates the three cases: edges s −→ y, edges x −→ d ,
and edges s −→ d , where s −→ x ∈ E and y −→ d ∈ E. The repair step has worst-case complexity
O(|V | log |V | + |E |), and restoring closure is O(|V |2). In a dense representation this worst case is
frequently hit, and even the best case is O(|V |). Later when we introduce sparse representations we
expect this worst-case behaviour to be very infrequent—in a sparse graph, a single edge addition
should affect very few shortest paths.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

A Fresh Look at Zones and Octagons 1:11

restore-potential(π , x
k
−→y, E)

for each v ∈ V
γ (v) := 0
π ′(v) := π (v)

γ (y) := π (x) + k − π (y)
while (min(γ) < 0 ∧ γ (x) = 0)

s := argmin(γ)
π ′(s) := π (s) + γ (s)
γ (s) := 0

for each s
k ′
−−→t ∈ E

if (π ′(t) = π (t))
γ (t) := min{γ (t), π ′(s) + k ′ − π (t)}

if (γ (x) < 0)
return inconsistent

return π ′

v0

x

y

z

-2

1 3

2

-5

(a) (b)

Fig. 5. (a) Cotton and Maler’s algorithm for repairing a potential function after addition of an edge x
k
−→y.

(b) Adding an edge requires the potential function to be repaired.

The algorithm that finds a repaired potential function (if one exists) is shown in Figure 5(a). When
adding an edge x

k
−→y, the algorithm first considers y, to see whether π (y) needs to be updated.

The function γ keeps a record of how potential values are required to change, in the presence of
the new edge. When the value of a vertex changes, only its successor vertices are considered for a
possible update. This way, large parts of the constraint graph may not need inspection. If the new
edge x

k
−→y gives rise to a negative-weight cycle, that will manifest itself as a need to decrease the

value of π (x).

Example 3.1. Consider the constraint system {x ≥ 2,y ≤ 1, x − z ≤ 2, z − y ≤ 3}. The constraint
graph is shown as the solid edges in Figure 5(b). Assume the potential values are π (v0) = 0, π (x) =
4, π (y) = 1, π (z) = 3. If we now add the constrainty−x ≤ −5, that is, the edge x

−5
−−→y shown dashed

in Figure 5(b), restore-potential will calculate γ (y) = π (x) + k − π (y) = −2 as the adjustment that
π (y) requires, in order to satisfy the new constraint. The new potential value fory becomes −1, after
which the edge y

3
−→z can be considered. This leads to γ (z) being updated, to −1+ 3− 3 = −1, so that

the new potential value for z becomes 2. Finally, the edge z
2
−→x is considered: γ (x) = 2 + 2 − 4 = 0,

so no further updates to the potential function take place. □

3.4 Assignment
The key to efficient processing of an assignment statement is this observation: executing [[x := S]]
can only introduce relationships between x and other variables; it cannot tighten any existing
relation.5 From the current state φ = ⟨π , E⟩, we can compute a valid potential for x simply by
evaluating S under π .

We then need to compute the shortest distances to and from x (after adding edges corresponding
to the assignment). As π is a valid potential function, we could simply run two passes of Dijkstra’s
5Assuming E(S) is a total function. Where, say, integer division is partial we first close with respect to x, then enforce the
remaining invariants.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Gange et al.

v0

x

yz

10

2

-1

-3

v0

x

yz

10

2

-1

-3

2
0

-4

-3

v0

x

yz

w

10

2

-1

-3

2
0

-4

-3 -4
01

-4

-3

(a) (b) (c)

Fig. 6. (a) The graph from Example 2.3. (b) Its closure. (c) Edges introduced after evaluating [[w := x + z]].

algorithm to collect the consequences. Before we give a detailed algorithm, let us work through an
example.

Example 3.2. [28] Consider again the state shown in Figure 2(b). For easy reference it is repeated
as Figure 6(a). Its tr-closure is shown in Figure 6(b). We wish to evaluate [[w := x + z]]. Using the
potential function from Example 2.4, that is, π = {v0 7→ 2, x 7→ 3,y 7→ 3, z 7→ 9}, we first compute
a valid potential forw , from the potentials for x and z:

π (w) = π (v0) + (π (x) − π (v0)) + (π (z) − π (v0)) = 2 + (3 − 2) + (9 − 2) = 10

Using the natural propagation rules for +, utilising the known bounds for x (0..1) and z (4..∞), the
new difference constraints are as follows:

from w ≤ xhi + zhi derive true
from w ≥ xlo + zlo derive v0 −w ≤ −4
from w − x ≤ zhi derive true
from w − x ≥ zlo derive x −w ≤ −4
from w − z ≤ xhi derive w − z ≤ 1
from w − z ≥ xlo derive z −w ≤ 0

The resulting four new edges are shown in Figure 6(c). Running Dijkstra’s algorithm to/fromw , we
also find the edgew

−3
−−→y, corresponding to y −w ≤ −3 (shown dashed in Figure 6(c)). □

Other arithmetic operators are handled in a similar way. Coefficients (outside of {−1, 0, 1}) on the
right-hand side of an assignments do not prevent extraction of difference constraints. For example,
[[w := x + 7y]] can be transformed to [[w := y + x + 6y]], from which we can extract bounds onw −y
and on y −w . Namely,w ≤ y + ub(x + 6y) andw ≥ y + lb(x + 6y), where ub and lb calculate upper
and lower bounds, respectively, of expressions. In Figure 7 we assume that, given an assignment
w := S, function edges-of-assign produces all such new edges that linkw to variables occurring in
S .

Example 3.2 suggested the use of Dijkstra’s algorithm to establish tr-closure. But, since the
incoming E is already tr-closed, we can do better than running a full Dijkstra’s algorithm. Assume
some shortest path from x to z passes through [x,u1, . . . ,uk , z]. As E is closed there must be some
edge (u1, z) such that wtE (u1, z) ≤ wtE (u1, . . . ,uk , z); thus, we never need to expand grand-children
of x . The only problem is if we expand immediate children of x in the wrong order, and later
discover a shorter path to a child that has already been expanded. However, recall that π allows
us to reframe E in terms of slack, which is non-negative. If we expand children of x in order of
increasing slack, we will never find a shorter path to an already expanded child.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

A Fresh Look at Zones and Octagons 1:13

assignment(⟨π , E⟩, [[x := S]])
π ′ := π [x 7→ π (v0) + eval-expr(π , S)]
E ′ := E ∪ edges-of-assign(E, [[x := S]])
δ := close-assignment(⟨π ′, E ′⟩, x)
return ⟨π ′, E ′ ⊗ δ⟩

eval-expr(π , S)
match S with

c: return c + π (v0) % constant
x: return π (x) − π (v0) % variable
f(s1, . . . , sk): % arithmetic expression

for each i ∈ {1, . . . ,k}
ei := eval-expr(π , si)

return f (e1, . . . , ek)

close-assignment(⟨π , E⟩, x)
δf := close-assignment-fwd(⟨π , E⟩, x)
δr := close-assignment-fwd(⟨−π , rev(E)⟩, x)
return δf ∪ rev(δr)

close-assignment-fwd(⟨π , E⟩, x)
for each v ∈ V

reach(v) := 0
dist(v) := ∞

reach(x) := 1
dist(x) := 0
adj := ∅

for each x
k
−→y ∈ E(x) by increasing k − π (y)

if (reach(y))
dist(y) := min(dist(y),k)

else
adj := adj ∪ {y}
reach(y) := 1
dist(y) := k

for each y
k ′
−→z ∈ E(y)

if (reach(z))
dist(z) = min(dist(z), dist(y) + k ′)

else
adj := adj ∪ {z}
reach(z) := 1
dist(z) := dist(y) + k ′

return {x
dist(y)
−−−−−→y | y ∈ adj, dist(y) < wtE (x,y)}

Fig. 7. Updating the abstract state under an assignment.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Gange et al.

v0

x

yz

w

4
10

3

Fig. 8. Edges introduced in Example 3.3, re-cast in terms of slack.

meet(⟨π1, E1⟩, ⟨π2, E2⟩)
E := E1 ⊗ E2
π := compute-potential(E, π1)
if (π = inconsistent)

return ⊥

δ := close-meet(π , E, E1, E2)
return ⟨π , E ⊗ δ⟩

Fig. 9. Computing the meet over sparse graphs. The function compute-potential is defined in Figure 10,
close-meet in Figure 11.

Thus, unlike Dijkstra’s algorithm, close-assignment-fwd has no need of a priority queue. It
instead simply expands children of x in order of increasing slack, collecting the minimum distance
to each grandchild. The whole improved algorithm for restoring closure after an assignment is given
in Figure 7. The worst-case complexity of this algorithm is O(|S | log |S | + |E |) (here |S | denotes the
number of variables in the expression S). The assignment [[x := S]] generates at most 2|S | immediate
edges, which we must sort. We then perform a single pass over the grandchildren of x . In the
common case where |S | is bounded by a small constant, this collapses to O(|E |) (recall that the
inverted graph rev(E) is not explicitly computed).

Example 3.3. Consider again the assignment [[w := x + z]] in Example 3.2. The slack graph, with
respect to potential function π = {v0 7→ 2, x 7→ 3,y 7→ 3, z 7→ 9,w 7→ 10}, is shown in Figure 8.

Processing outgoing edges ofw in order of increasing slack, we first reach z, marking v0, x and y
as reached, with dist(v0) = −4, dist(x) = −3 and dist(y) = −3. We then process x , which is directly
reachable at distance dist(x) = −4, but find no other improved distances. After finding no improved
distances throughv0, we walk through the vertices that have been touched and collect all improved
edges, returning {y −w ≤ −3} as expected. □

3.5 Meet
The meet operation ⟨π1, E1⟩ ⊓⟨π2, E2⟩ is more involved. We first collect each relation from E1 ∪ E2,
but we must then compute an updated potential function, and restore closure. The overall algorithm
is given in Figure 9.

Our method for computing a valid potential function is similar to the approach found in Johnson’s
algorithm [37]. Johnson’s algorithm uses the Bellman-Ford algorithm [7, 26] as a platform for
calculating a valid potential function (or determining that none exists). A plethora of refinements
and variants are known, see Cherkassky and Goldberg [12], any of which could be applied here. Our

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

A Fresh Look at Zones and Octagons 1:15

compute-potential(E, π)
π ′ := π
for each scc ∈ strong-components(E)

Q := scc
for each iter ∈ [1, |scc |]

Q ′ := ∅

while (Q , ∅)
x := Q .pop()

for each x
k
−→y ∈ E(x)

if (π ′(x) + k − π ′(y) < 0)
π ′(y) := π ′(x) + k
if (y ∈ scc ∧ y < Q ∪Q ′)

Q ′ := Q ′ ∪ {y}
if (Q ′ = ∅)

return π ′

Q := Q ′

while (Q , ∅)
x := Q .pop()

for each x
k
−→y ∈ E(x)

if (π ′(x) + k − π ′(y) < 0)
return inconsistent

return π ′

Fig. 10. Warm-started Bellman-Ford algorithm. We assume connected components are ordered topologically.

approach is to build the construction of a potential function into the basic Bellman-Ford algorithm,
with a few minor refinements:

• π ′ is initialized from π1 or π2 (we say it is “warm started”).
• Bellman-Ford is run separately on each strongly-connected component.
• We maintain separate queues for the current and next iteration.

This modified Bellman-Ford algorithm is given in Figure 10. Notice that if π ′(x) changes but x is
still in Q , there is no need to add it to Q ′—its successors will already have been updated by the end
of the current iteration.

Consider again Figure 9. The straightforward approach to restoring tr-closure of E = E1 ⊗E2 is to
run Dijkstra’s algorithm from each vertex (essentially running Johnson’s algorithm). However, we
can exploit the fact that E1 and E2 are already tr-closed. When we collect the pointwise minimum
E1 ⊗ E2, we mark each edge as 1, 2 or both, according to its origin. We think of 1 and 2 as separate
colours. Observe that if all edges reachable from some vertex v have the same colour then the
subgraph from v is already closed.
To see how the colouring can save work, consider the behaviour of Dijkstra’s algorithm. We

expand some vertex v , adding •
k
−→x to the priority queue. Assume the edge v

k
−→x originated from

the set E1. At some point, we remove •
k
−→x from the queue. Now let x

k ′
−→y be some child of x . If

x
k ′
−→y also originated from E1, we know that E1 also contained some edge v

c
−→y with c ≤ k + k ′

which will already be in the priority queue—thus there is no point exploring any outgoing E1-edges
from x .

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Gange et al.

We thus derive a specialized variant of Dijkstra’s algorithm. The following assumes we can freely
iterate through edges of specific colours—this index can be maintained during construction, or
partitioning edges via bucket-sort between construction and closure.6
The complete algorithm for restoring tr-closure is presented in Figure 11. We run Dijkstra’s

algorithm as usual, except any time we find a minimum-length path to some vertex y, we mark
y with the colour of the edge through which it was reached. Then, when we remove y from the
priority queue we only explore edges where none of its colours are already on the vertex. In practice,
the initialization of dist and edge-col is performed only once and preserved between calls, rather
than performed explicitly for each call. Notice that the potential function π passed to close-meet is
needed by the chromatic Dijkstra’s algorithm, for the maintenance of its priority queue Q .

Example 3.4. Consider the conjunction of two closed states shown in Figure 12(a), one in red and
one in blue. To restore closure we run the closure-aware Dijkstra’s algorithm from each vertex.
Taking x as the source, we add •

1
−→ y and •

2
−→ z to the priority queue, and mark y and z as

reachable via blue (solid) edges. We then pop y from the queue. y is marked as reachable via blue
so we need only check red (dashed) children, of which there are none. We finally pop z, finding the
same.
Selecting w as origin, we add •

0
−→x and •

2
−→y to the queue, both marked as reachable via red

(dashed) edges. We then process x . As x is reachable via red, we must expand its blue children. The
edge x

1
−→y provides an improved path to y, so we update the distance and mark y as reachable

instead via blue. This places us in the same state we had before; we finish processing y and z as
above. The resulting graph is shown in Figure 12(b). □

3.6 Join
For ⟨π1, E1⟩ ⊔⟨π2, E2⟩, both π1 and π2 are valid potential functions, so we can choose either. We
then collect the pointwise maximum E1 ⊕ E2, see Figure 13. If E1 and E2 are tr-closed, E1 ⊕ E2 is
also tr-closed, so the overall result is simply ⟨π1, E1 ⊕ E2⟩. Assuming we can look up a specific edge
in constant time, this takes worst case O(min(|E1 |, |E2 |)).

3.7 Widening
For widening, we follow the usual practice of discarding unstable edges—those edges that have
weakened in successive iterates. We consider each edge x

k2
−→y ∈ E2 (in an ascending sequence, E2

has fewer edges), and add x
k1
−→y to E1

`
E2 iff x

k1
−→y ∈ E1 and k2 ≤ k1. Unlike the join, this does

not necessarily preserve closure, so we must restore closure before subsequent operations.7
We omit a formal algorithm here, returning instead to the problem of widening in Section 5.5.

4 SPARSE GRAPH REPRESENTATIONS
So far we have avoided discussion of the underlying graph representation. However, choosing an
appropriate representation of the constraint graph is critical for performance. Upon a meet or join,
we must walk pointwise across the two graphs; during closure, it is useful to iterate over edges
incident to a vertex, and to examine and update relations between arbitrary pairs of variables. On
elimination of a variable v , we must remove all edges to or from v .
Conventional representations handle only some of these efficiently. Dense matrices are con-

venient for updating specific entries, but cannot iterate over only the non-trivial entries. Meet
6It is not immediately clear how to extend this efficiently to an n-way meet, as a vertex may be reachable from some
arbitrary subset of the operands.
7Except subsequent widenings, which must use the un-closed result.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

A Fresh Look at Zones and Octagons 1:17

close-meet(π , E, E1, E2)
for each (x,y) ∈ V 2

edge-col(x,y) := ∅

for each x
k
−→y ∈ E1

if (wtE (x,y) = k)
edge-col(x,y) := edge-col(x,y) ∪ {1}

for each x
k
−→y ∈ E2

if (wtE (x,y) = k)
edge-col(x,y) := edge-col(x,y) ∪ {2}

δ := ∅

for each x ∈ V
δ := δ ∪ chromatic-Dijkstra(⟨π , E⟩, x)

return δ
chromatic-Dijkstra(⟨π , E⟩, x)

for each v ∈ V
dist(v) :=∞

Q := init(λx . dist(x) + π (x))
δ := ∅

for each x
k
−→y ∈ E(x)

dist(y) := k
Q .add(y)
reach-col(y) := edge-col(x,y)

while (Q , ∅)
y := Q .remove-min()
if (dist(y) < wtE (x,y))

δ := δ ∪ {x
dist(y)
−−−−−→y }

% Iterate through edges of the other colour
for each c ∈ {1, 2} \ reach-col(y)

for each y
k
−→z ∈ Ec (y)

dxyz := dist(y) + k
if (dxyz = dist(z))

reach-col(z) := reach-col(z) ∪ edge-col(y, z)
if (dxyz < dist(z))

dist(z) := dxyz
Q .update(z, π)
reach-col(z) := edge-col(y, z)

return δ

Fig. 11. Dijkstra’s algorithm modified to exploit closed operands.

and join must walk across the entire matrix—even copying an abstract state is always a O(|V |2)

operation. Adjacency lists support efficient iteration and handle sparsity gracefully, but we lose
efficiency of insertion and lookup.

A representation which efficiently supports all the operations we require is the adjacency hash-
table, consisting of a hash-table mapping successors to weights for each vertex, and a hash-set

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Gange et al.

(a) (b)

w x y z
0

2

1 1

2

w x y z
0

2

1 1

2

2

Fig. 12. (a) The conjunction of two tr-closed graphs (E1, dashed red, corresponds to {x −w ≤ 0,y −w ≤ 2}
and E2, blue, corresponds to {y − x ≤ 1, z − y ≤ 1, z − x ≤ 2}. (b) The tr-closure of E1 ⊗ E2.

join(⟨π1, E1⟩, ⟨π2, E2⟩)
return ⟨π1, E1 ⊕ E2⟩

Fig. 13. The join of two tr-closed graphs.

of the predecessors of each vertex. This would provide the asymptotic behaviour we want but is
rather heavyweight, with substantial overheads on operations.

We instead adopt a hybrid representation: weights are stored in a dense but uninitialized matrix,
and adjacencies are stored using a “sparse-set” structure [9]. A sparse-set structure consists of a
triple (dense, sparse, sz) where dense is an array containing the elements currently in the set, sparse
is an array mapping elements to the corresponding indices in dense, and sz the number of elements
in the set. We can iterate through the set by traversing {dense[0], . . . , dense[sz − 1]}.
The sparse-set representation trades memory consumption to improve efficiency of primitive

operations. It introduces an overhead of roughly 8 bytes per matrix element8—2 bytes each for the
sparse and dense entry for both predecessors and successors. For 64-bit weights, this doubles the
overall memory requirements relative to the direct dense matrix. We shall see later, however, that
this trade-off typically falls in our favour.
Pseudo-code for primitive sparse-set operations are given in Figure 14. Note that we preserve

this invariant:
∀ i ∈ [0, sz) . sparse[dense[i]] = i

This means for any element k ′ outside the set, either sz ≤ sparse[k ′], or dense[sparse[k ′]] points to
some element other than k ′—without making any assumptions about the values in sparse or dense.
Thus, we simply need to allocate memory for sparse and dense, and initialize sz.

This gives us a graph representation with O(1) constraint addition, removal, lookup and enumer-
ation (with very low constant factors), and O(|V | + |E |) time to initialize or copy. 9

5 SNF ZONES: IMPROVED PERFORMANCE THROUGH SPLIT NORMAL FORM
In previous sections, we made the key assumption that the abstract states were sparse. During the
later stages of analysis, this is typically the case. However, abstract states in early iterations are
often complete; Singh et al. [58] observed that the first 50% of analysis iterations were extremely

8This assumes that vertex identifiers fit in 16 bits. If there are more than 216 variables in scope at a program point,
any approach using a dense matrix is already impractical—instead use the hash-table representation, hope the graph is
exceptionally sparse, and consider using a different domain.
9We could reduce this to O(|E |) by including an index of non-empty rows, but this adds an additional cost to each lookup.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

A Fresh Look at Zones and Octagons 1:19

elem((dense, sparse, sz),k)
return sparse[k] < sz ∧ dense[sparse[k]] = k

add((dense, sparse, sz),k)
sparse[k] := sz
dense[sz] := k
sz := sz + 1

remove((dense, sparse, sz),k)
sz := sz − 1
k ′ := dense[sz]
dense[sparse[k]] := k ′

sparse[k ′] := sparse[k]

Fig. 14. Basic operations on sparse sets.

0 : x1, . . . , xk := 1, . . . ,k
1 : if (∗)
2 : x1 := x1 + 1
3 : x2 := x2 + 1
4 :

Fig. 15. At line 4, the only constraint not implied by variable bounds is x2 = x1 + 1.

dense, sparsity only appearing after widening. But closer scrutiny reveals this initial completeness
as a mirage.
Recall the discussion in Section 2 on the handling of variable bounds: an artificial vertex v0

is introduced, and bounds on x are encoded as relations between x and v0. Unfortunately, this
interacts badly with closure under entailment: if variables are given initial bounds, the abstract
state is represented by a complete graph.
This is regrettable, as it undermines the sparsity we intend to exploit. It is only after widening

that unstable variable bounds are discarded and sparsity arises, revealing the underlying structure
of relations. Also, all these invariants are trivial—we should only need to care about binary relations
that are not already implied by variable bounds.

Example 5.1. Consider the program fragment shown in Figure 15. Variables x1, . . . , xk are ini-
tialised to constants at line 0. At that point, a direct implementation of Zones (or Octagons) will
compute k(k − 1) pairwise relations implied by these bounds. During the execution of lines 2 and 3,
each of these relations will be updated, despite all inferred relations being simply the consequences
of variable bounds.
At line 4, we take the join of the two sets of relations. In a direct implementation, this graph is

complete, even though there is only one relation that is not already implied by bounds, namely
x2 = x1 + 1. □

We could avoid this phantom density by storing the abstract state in a (possibly weakly) tran-
sitively reduced form, an approach that has been successful in constraint programming [24] and

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Gange et al.

SMT [16] contexts.10 Unfortunately, we are hindered by the need to perform frequent join oper-
ations. The join of two tr-closed graphs is simply E1 ⊕ E2. For transitively reduced graphs, we
are forced to first compute the closure, perform the pointwise maximum, then restore the result
to transitively reduced form. Algorithms exist to efficiently compute the transitive reduction and
closure together, but we would still need to restore the reduction after joins. Hence transitive
reduction is not a good approach.

Instead, we construct a modified normal form which distinguishes independent properties (edges
to/from v0) from strictly relational properties (edges between program variables). A graph E is in
split normal form iff:

• E \ {v0} is tr-closed.
• For every path v0 → x1 → . . . → xm in E, there is an edge v0

k
−→ xm such that k ≤

wtE (v0, x1, . . . , xm).
• For every path xm → . . . → x1 → v0 in E, there is an edge xm

k
−→ v0 such that k ≤

wtE (xm, . . . , x1,v0).
This means that if E is in split normal form, any shortest path in E from x to y occurs either as an
edge x

k
−→y, or else as a path x

k1
−→v0,v0

k2
−→y.

Note that split normal form is not a canonical form: the graphs {x
1
−→v0,v0

1
−→y} and {x

1
−→v0,v0

1
−→

y, x
2
−→y} are both in split normal form, and denote the same set of relations. We could establish a

canonical form by removing edges implied by variable bounds, then re-closing E \ {v0}, but would
we gain nothing by doing so, since we already have an efficient entailment test.

A state in the domain of split constraint graphs is either ⊥ or a pair ⟨π , E⟩ with E a graph in split
normal form, and π a valid potential function for E. We must now modify each abstract operation
to deal with graphs in split normal form. We refer to the resulting abstract interpretation as “SNF
Zones”.

5.1 Ordering
With split normal form, the entailment check is slightly more complex. We have E1 ⊑ E2 iff, for
every x

k
−→y ∈ E2:

min(wtE1 (x,y),wtE1 (x,v0,y)) ≤ k

Assuming constant-time lookups, this test takes O(|E2 |) time.

5.2 Variable Elimination
Variable elimination is exactly as in Section 3—we just discard all edges incident on variable to be
eliminated. Note that this operation preserves split normal form.

5.3 Constraint Addition, Assignment, and Meet
Similarly, the modifications for constraint addition, assignment, and meet are relatively straightfor-
ward. The construction of the initial (non-normalized) result and computation of potential function
are performed exactly as in Section 3. The difference is that now, when we restore tr-closure, we do
so only for E \ {v0}. To maintain the sparse split normal form with a minimal amount of work, most
operations will work incrementally, identifying small sets δ of binary constraints to add or update.
However, newly discovered binary constraints δ may have consequences for variable bounds. Since
our aim is to also keep variable bounds explicit at all times, we need to find bounds relations that
10This terminology is unfortunate. The transitive reduction computes the greatest (by ⊑) equivalent representation of R ,
whereas the usual abstract-domain reduction corresponds to the transitive closure.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

A Fresh Look at Zones and Octagons 1:21

update-boundsZ(E, δ)

boundd :=
{
v0

k0+k
−−−−→d

�� v0 k0
−→s ∈ E, s

k
−→d ∈ δ ,k0 + k < wtE (v0,d)

}
bounds :=

{
s
k0+k
−−−−→v0

�� s k
−→d ∈ δ ,d

k0
−→v0 ∈ E,k0 + k ≤ wtE (s,v0)

}
return δ ∪ boundd ∪ bounds

Fig. 16. Extending a set δ of binary constraints to make any implied bounds constraints explicit.

add-edgeZ(⟨π , E⟩, e)
E ′ := E ∪ {e}
π ′ := restore-potential(π , e, E ′)

if (π ′ = inconsistent)
return ⊥

δ := close-edge(e, E ′ \ {v0})
return ⟨π ′, E ′ ⊗ update-boundsZ(E, δ)⟩

assignmentZ(⟨π , E⟩, [[x := S]])
π ′ := π [x 7→ eval-expr(π , S)]
E ′ := E ∪ edges-of-assign(E, [[x := S]])
δ := close-assignment(⟨π ′, E ′ \ {v0}⟩, x)
return ⟨π ′, E ′ ⊗ δ⟩

meetZ(⟨π1, E1⟩, ⟨π2, E2⟩)
E := E1 ⊗ E2
π := compute-potential(E, π1)
if (π = inconsistent)

return ⊥

δD := (E1 ⊟ E2) \ {v0}
δC := close-meet(π , E \ {v0}, E1, E2)
return ⟨π , E ⊗ update-boundsZ(E, δD ∪ δC)⟩

Fig. 17. Constraint addition, assignment and meet for split normal graphs. The function close-edge was
defined in Figure 4, restore-potential in Figure 5(a), close-assignment and eval-expr in Figure 7, compute-
potential in Figure 10, and close-meet in Figure 11.

come about as a result of adding binary relations to a graph. The helper function update-boundsZ ,
shown in Figure 16 does this. It ensures that bounds information is maintained when a set δ of
binary constraints are added to E. It will be used in other operations to extend δ with bounds
constraints that are consequences of δ ∪ E.

Pseudo-code for constraint addition, variable assignment and meet is given in Figure 17.
Only the case of meet has become more complicated. As discussed in Section 3.5, E1 ⊗ E2 does

not necessarily provide a closed form of the meet, but a subsequent call to close-meet will identify
any binary constraints that need to be added. In turn, such binary constraints may entail new
bounds constraints, when combined with existing bounds constraints. The same goes for binary
edges present in E1 but not in E2 (and vice versa)—when combined with current bounds constraints,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Gange et al.

they may lead to new bounds being discovered. Hence we collate all these new binary constraints
and call the function update-boundsZ to add all entailed bounds.

Example 5.2. Consider the constraint sets E1 = {0 ≤ x,y ≤ z} and E2 = {x ≤ y}. In this case, the
pointwiseminimum and the symmetric difference coincide: E1⊗E2 = E1⊟E2 = {0 ≤ x, x ≤ y,y ≤ z}.
The “binary relational” part δD of E1⊟E2 is {x ≤ y,y ≤ z}. In this example, coincidentally, that same
set is passed to close-meet, which returns the set {x ≤ z} as the missing binary consequences. All of
these added binary consequences ({x ≤ y,y ≤ z, x ≤ z}) must now be passed to update-boundsZ , so
that any entailed bounds constraints can be made explicit: update-boundsZ returns {0 ≤ y, 0 ≤ z}
as newly discovered variable bounds. □

5.4 Join
In the context of split normal graphs, the computation of E1 ⊔E2 becomes more intricate. As in
Section 3.6, either potential function may be retained, and edges v0

k
−→x and x

k
−→v0 need no special

handling. However, we can no longer simply take pointwise maxima; direct application of the join
described in Section 3 may lose precision.

Example 5.3. Consider the join point at program line 4 in Figure 15. In split normal form, the
abstract states are:

E1 = {x
−1
−−→v0,v0

1
−→x,y

−2
−−→v0,v0

2
−→y, . . .}

E2 = {x
−2
−−→v0,v0

2
−→x,y

−3
−−→v0,v0

3
−→y, . . .}

Here E1 entails y − x = 1 through the path x
−1
−−→ v0,v0

2
−→ y; and E2 entails y − x = 1 through

y
−2
−−→v0,v0

1
−→x . Hence E1 ⊔ E2 should entail y − x = 1.

If we apply the join from Section 3, we obtain:

E = {x
−1
−−→v0,v0

2
−→x,y

−2
−−→v0,v0

3
−→y, . . .}

which only supports the weaker 1 ≤ y − x ≤ 2. □

We could find the missing relations by computing the strong closures of E1 and E2; but this rather
undermines our objective. Instead, consider the ways a binary constraint can arise in E1 ⊔E2:

(a) x
k
−→y ∈ E1 and x

k ′
−→y ∈ E2

(b) {x
k ′
−→v0,v0

k ′′
−−→y} ⊆ E1 and x

k
−→y ∈ E2 (or the converse)

(c) {x
k1
−→v0,v0

k2
−→y} ⊆ E1 and {x

k ′1
−→v0,v0

k ′2
−→y} ⊆ E2, where

max(k1 + k2,k ′
1 + k

′
2) < max(k1,k ′

1) +max(k2,k ′
2) (2)

The join operation presented in Section 3 collects only those binary relations which are explicit
in both E1 and E2, that is, case (a). We can find relations of form (b) by walking through E2, and
collecting any edges which are implicit in E1 (an example is provided later in this section). Case
(c) is the one illustrated in Example 5.3, where some invariant is implicit in both operands, but is
no longer maintained in the result. We only need to consider the cases where a new (or stronger)
binary constraint can be added. The condition for this is given by (2): The right-hand side is the
(implicit) weight we will get for x −→y once we apply ⊕ to E1 and E2. But a stronger constraint (that
is, a smaller weight) may be implied by both of E1 and E2 already: k = max(k1 + k2,k ′

1 + k
′
2) may

be smaller than max(k1,k ′
1) +max(k2,k ′

2). If that is the case then k is the correct weight to use in
the result.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

A Fresh Look at Zones and Octagons 1:23

joinZ (⟨π1, E1⟩, ⟨π2, E2⟩)
E ′
1 := E1 ⊗ split-relsZ (E1, E2)

E ′
2 := E2 ⊗ split-relsZ (E2, E1)

src+ :=
{
(x,wtE1 (x,v0),wtE2 (x,v0))

�� x ∈ V ∧ (wtE1 (x,v0) , ∞) ∧ (wtE1 (x,v0) > wtE2 (x,v0))
}

src− :=
{
(x,wtE1 (x,v0),wtE2 (x,v0))

�� x ∈ V ∧ (wtE2 (x,v0) , ∞) ∧ (wtE1 (x,v0) < wtE2 (x,v0))
}

dest+ :=
{
(y,wtE1 (v0,y),wtE2 (v0,y))

�� y ∈ V ∧ (wtE1 (v0,y) , ∞) ∧ (wtE1 (v0,y) > wtE2 (v0,y))
}

dest− :=
{
(y,wtE1 (v0,y),wtE2 (v0,y))

�� y ∈ V ∧ (wtE2 (v0,y) , ∞) ∧ (wtE1 (v0,y) < wtE2 (v0,y))
}

E ′ := bound-rels(src+, dest−) ∪ bound-rels(src−, dest+)
E := E ′ ⊗ (E ′

1 ⊕ E ′
2)

return ⟨π1, E⟩

split-relsZ (E1, E2)
E := ∅

for each x
k
−→y ∈ (E2 \ {v0})

if (wtE1 (x,v0,y) < wtE1 (x,y))

E := E ∪ {x
wtE1 (x ,v0,y)
−−−−−−−−−−→y}

return E

bound-rels(src, dest)
E := ∅

for each (x,k1,k
′
1) ∈ src

for each (y,k2,k
′
2) ∈ dest

if (x , y)

E := E ∪ {x
max(k1+k2,k ′1+k

′
2)

−−−−−−−−−−−−−−→y}
return E

Fig. 18. Join of abstract states in split normal form. split-relsZ collects binary constraints which are implicit
in EI but explicit in ER . bound-rels collects the binary constraints that are entailed by compatible bound
changes.

The join algorithm is given in Figure 18. The first two lines of code for joinZ extend the input
graphs with edges that can be derived as instances of case (b) above. The rest of the function deals
with case (c). It uses the fact that the restriction (2) can only hold when

(wtE1 (x,v0) < wtE2 (x,v0)) ∧ (wtE2 (v0,y) < wtE1 (v0,y)) (3)

or, alternatively, when

(wtE1 (x,v0) > wtE2 (x,v0)) ∧ (wtE2 (v0,y) > wtE1 (v0,y)) (4)

Figure 19 provides the intuition why, if neither (3) nor (4) holds, there is no need to worry about
implied binary constraints.
We can collect the relevant pairs of variables by placing them into buckets according to the

signs of wtE1 (v0, x) −wtE2 (v0, x) and wtE1 (x,v0) −wtE2 (x,v0), leading to four different buckets. For
example, the bucket src+ includes a triple (v,k1,k2) iff E1 has a smaller lower bound (−k1) forv than
E2 has. Relevant binary relations can only come about by combining src+ and dest−, or combining
src− and dest+. The function bound-rels finds these new derived binary relations.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Gange et al.

x v0 y-4 2
x v0 y-3 4

x

y

8

6

4

2

2 6

E2 :

E1 :

x v0 y-6 8

x v0 y-3 4

x

y

8

6

4

2

2 4

E2 :

E1 :

(a) (b)

Fig. 19. A graphical illustration of the impact of bounds constraints in the join operation. (a) A case where
neither (3) nor (4) holds, which means one of the two graphs subsumes the other (when projected onto the
vertex set {v0, x,y}). Implicit difference constraints (such as y − x ≤ 1—the area below the dashed line) can
remain implicit. (b) A case where (3) holds. The constraint y − x ≤ 2 (the area below the dashed line) must be
made explicit, as it is not implied by the new bounds (x ≥ 3,y ≤ 8—indicated by the dotted lines) that will be
derived for the join.

(a) (b) (c)

x y

u

v0
0 5

2 3

x y

u

v0
4

5

1

-1

x y

u

v0
4

5

5

3
-1 2

5

Fig. 20. (a) The constraint graph E1 for Example 5.4. (b) The graph E2. (c) The join of the two.

Note the order of construction of E in Figure 18. Each of the initial components E1, E ′
1, E2, E

′
2 and

E ′ is in split normal form. E ′
1 ⊕ E ′

2 may not be, but at the point when E ′
1 ⊕ E ′

2 has been calculated,
there is no need to normalize the result. Namely, relations in classes (a) and (b) are preserved by ⊕,
bounds relations (that is, relations with v0) are fully closed, and all binary constraints that flow
from class (c) are captured in E ′, and hence will be added immediately. To see that the result is
indeed tr-closed, assume E ′ ⊗ (E ′

1 ⊕ E ′
2) is not tr-closed. Then there must be some path x

k
−→y ∈ E ′,

y
k ′
−→z ∈ (E ′

1 ⊕ E ′
2) such that x

k+k ′
−−−−→z is not in either operand. But that is not possible, because it

means there must be a path x
c1
−→v0,v0

c2
−→y,y

c3
−→z ∈ E1 such that c1 + c2 ≤ k , c3 ≤ k ′, and then

there must also be some path x
c1
−→v0,v0

c ′
−→z ∈ E1, with c ′ ≤ c2 + c3. The same kind of reasoning

holds for E2. Thus x
k+k ′
−−−−→z must be in E ′ ⊗ (E ′

1 ⊕ E ′
2).

To illustrate the workings of the join algorithm, let us walk through two examples.

Example 5.4. Consider the constraint sets C1 = {u ≤ 2, x ≥ 0,y − u ≤ 3} and C2 = {u ≥ 1, x ≥

−4,y ≤ 1,u − x ≤ 5}. The corresponding constraint graphs E1 and E2 are shown in Figure 20. The
graphs are in split normal form. In particular, the C1 consequence y ≤ 5 is explicit in E1, as it is a
bounds constraint, but other C1 consequences such as u − x ≤ 2 are not (as this is not required for

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

A Fresh Look at Zones and Octagons 1:25

(a) (b) (c)

x y

u v

v0-1 -1

1
-1 2

-2

x y

u v

v0-2 1

2
-2 3

-3

x y

u v

v0-1 1

2
-1 3

-2

-1

0 2

1

-1

-1 1

Fig. 21. (a) The constraint graph E3 for Example 5.5. (b) The graph E4. (c) The join of the two. Binary relations,
including edges for y − x = 1, have been added, as these edges cannot be derived from the updated variable
bounds (that is, edges to and from v0).

split normal form). Similarly, the C2 consequence x ≥ −4 is explicit in E2. Importantly, note that
y − x ≤ 5 is a (non-visible) consequence of C1 as well as of C2.

The role of split-rels is to extend E1 with the edge x
2
−→u and E2 with u

0
−→y. At this point we can

take the pointwise maximum of the two graphs. We also find src+ = dest− = ∅, src− = {(x, 0, 4)},
and dest+ = {(y, 5, 1)}. This identifies x

5
−→y as an edge that needs to be made explicit in the result

of the join. The resulting graph is shown in Figure 20(c). Note that none of the three resulting
binary relations (u − x ≤ 5, y − u ≤ 3, y − x ≤ 5) is a consequence of variable bounds—all need to
be explicit. □

Example 5.5. Consider the constraint sets C3 = {u ≥ 1,v ≤ −1, x = 1,y = 2} and C4 =

{u ≥ 2,v ≤ 1, x = 2,y = 3}. The constraint graphs E3 and E4 in split normal form are shown
in Figure 21. In this example, both graphs have bounds relations only, so split − relsZ plays no
role. The bounds constraints for the resulting graph are found by pointwise maximum, as seen in
Figure 21(c). It remains to find the implicit binary relations (case (3)). We find src− = dest+ = ∅,
src+ = {(u,−1,−2), (x,−1,−2), (y,−2,−3)}, and dest− = {(v,−1, 1), (x, 1, 2), (y, 2, 3)}. Hence we add
the following edges: u

−1
−−→v , u

0
−→x , u

1
−→y, x

−1
−−→v , x

1
−→y, y

−2
−−→v , y

−1
−−→x .

The result is shown in Figure 21(c). Note how the binary relation y − x = 1 has been preserved,
in spite of being only implicit in the input graphs. □

5.5 Widening
Just as the join operation required extra care, widening for SNF Zones is a delicate operation. A
well-known issue in the implementation of widening for classical Zones is the fact that a natural
widening operator, which simply removes an edge whose weight changes from one iteration to the
next, can interact in an undesirable way with tr-closure. Namely, an edge which is removed by
widening may inadvertently be re-introduced by tr-closure, causing non-termination. Miné [45, 46]
pointed this out in the original papers on Zones and Octagons, providing concrete examples of
the problem. With SNF Zones, the fact that a large portion of binary relations are implicit only
exacerbates the problem. Namely, in our sparse representation, there is no way of distinguishing
edges which were never present (because they were always implied by bounds) from those which
have deliberately been discarded through widening (leaving only a weaker implicit relation).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Gange et al.

We therefore take a different approach to widening, using the concept of “isolated” widening [29].
The idea is to separate the termination aspect of widening from the task of finding upper bounds in
the abstract domain D. In this approach, one distinguishes an “isolated” widening domainW, which
is related to, but not necessarily the same as, D. The role ofW is to ensure termination;W must be
a poset satisfying the condition that every ascending chain inW stabilises in finite time, that is, for
every sequence s0 ≤ s1 ≤ s2 ≤ . . . ofW, there is some k ∈ N such that sk = sk+1 = sk+2 = We
refer to a set with this property as an acc-poset.
W is equipped with three operations:

▽▽ : W × D → W reflect : D → W reify : W → D

Here, ▽▽ is the widening operator, and the functions reflect and reify provide the correspondence
between D andW. The function reflect lifts an abstract state to initialize an ascending sequence,
and reify maps the current iterate back onto the abstract domain, in preparation for computing the
next step in the sequence.

Definition 5.6 (Isolated widening). Let (D, ⊑) be an abstraction of poset (C, ⊆) given by concreti-
sation γ . The quintuple ⟨W, ⪯, reflect, reify,▽▽⟩ is an isolated widening for (D, ⊑) iff (W, ⪯) is an
acc-poset and the operators ▽▽ : W × D → W, reflect : D → W, and reify : W → D satisfy:

∀x ∈ D. (γ (x) ⊆ γ (reify(reflect(x)))) (5)
∀w ∈ W, x ∈ D. (w ⪯ (w ▽▽x)) (6)

∀w ∈ W, x ∈ D. (γ (x) ⊆ γ (reify(w ▽▽x))) (7)

For details, and motivation for this approach to widening, see Gange et al. [29]. Inw ▽▽d , the left
argument (the widener) holds “historical” information whereas the right argument (the “widenee”)
holds “current” information (which may be weakened as a result of widening). Allowing the two to
inhabit different (albeit closely related) structures offers certain advantages [29].

The isolated widening domainW consists of a set of weighted edges E (not generally tr-closed).
We define the ordering ≤ on widener iterates as:

E1 ≤ E2 iff E1 ⊇ E2∨
(
(incidE1 (v0) ⊃ incidE2 (v0))∧∀x

k
−→y ∈ E2 (k ≥ min(wtE1 (x,y),wtE1 (x,v0,y)))

)
This ordering allows a new binary relationship edge to be introduced by ▽▽; but only if some bounds
edge is discarded at the same time (ensuring the ascending chain property), and the relation was
already implied by bounds (so increasing under ≤ is also increasing under ⊑). We shall use this
flexibility to allow ▽▽ to deal with stable, but implicit, relationships which would otherwise be lost.

If a binary relationship implied by bounds is stable, but the bounds relations themselves no longer
are stable, we introduce the binary edge—irrespective of whether a corresponding relationship has
been eliminated. Importantly, this can happen only once: x −→y would have been made explicit
because one ofwtE (x,v0) andwtE (v0,y)was unstable. After this bound is discarded, the relationship
is no longer implied. Thus we still have a well-founded sequence: in each ascending iteration, either
the number of bounds edges decreases, or the number of bounds edges is unchanged, and the
number of binary edges decreases.

Example 5.7. Consider the graphs E5 and E6 given in Figure 22. Figure 22(c) shows the result of
computing E5 ▽▽E6. The algorithm proceeds by first collecting all stable relationships which are
explicit in one (e.g.,w

3
−→x) or both (e.g., v

1
−→w) operands. This yields the solid edges in Figure 22(c).

Then stable-implicit collects the relations which are implied by bounds on both sides. As with the
join, we examine the direction of bound changes to determine which relations may need to be
introduced. In this example, u

2
−→v and u

3
−→w are implied by bounds on both sides, but would be

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

A Fresh Look at Zones and Octagons 1:27

u v0

v

w

x

1
1

2

2

1

3

1 u v0

v

w

x

2
00

3
1

-1

1

u v0

v

w

x

1
2

1

3

2

3

(a) E5 (b) E6 (c) E5 ▽▽E6

Fig. 22. Widening: steps involved in computing E5 ▽▽E6. When applied to the result, reify will add edges

v
4
−→x , u

6
−→x , and v0

5
−→x .

lost when u
1
−→v0 is discarded. When we map the result back onto D, reify will add the missing

edges v
4
−→x and u

6
−→x , plus the missing bound v0

5
−→x , to restore SNF. □

Pseudo-code for isolated widening for SNF Zones is shown in Figure 23. To make reify faster, we
augment the widener with the potential function π (to avoid re-computing it).

We can also augmentW to apply a short-cut here similar to the chromatic Dijkstra’s algorithm.
Consider again running Dijkstra’s algorithm from v on E1 ▽▽E2 for classical (non-SNF) zones. At
some point, we reach a vertexw with E∗1(w) = (E1

`
E2)(w)—that is, all outgoing edges fromw are

stable in E∗1 . But since E1 ⊑(E1
`
E2), we have (E1

`
E2)(w) = E∗1(w) ⊑(E1

`
E2)

∗(w). Thus we do
not need to further expand any children reached viaw , as any such vertex is already in the priority
queue, with equal or better weight.
It is also possible to use information about such stable vertices to obtain early termination for

graphs in SNF. For clarity of presentation, we omit this from Figure 23; the necessary changes are
similar in flavour to those for chromatic Dijkstra (tracking a set of vertices which are known to be
stable).

6 FROM ZONES TO OCTAGONS
The Octagons domain [48] subsumes the Zones domain; it also allows the capturing of constraints
of the form x + y ≤ k and −x − y ≤ k . This added expressiveness has made it a popular abstract
domain.

6.1 Octagons
Octagons [48] or, as they are known in the constraint programming community, unit coefficient
two variables per inequality (UTVPI) constraints [35] approximate a concrete state by predicates of
the forms x ≤ k , x ≥ k , y − x ≤ k , x + y ≤ k , and −x − y ≤ k where x and y are variables and k is
some constant.

Such constraints can be mapped to difference constraints using an idea suggested by Miné [48]:
Introduce two versions of each variable x , namely x+ and x− where x+ represents x and x−

represents −x . We can then map all Octagons constraints into Zones constraints over these new
variables, see Table 2. Correspondingly we have a graph representation over the variable set
V± = {v+ | v ∈ V } ∪ {v− | v ∈ V }. The involution o(·) links the two variable representatives:
o(v+) = v−, and o(v−) = v+. We refer to a graph over V± as a Miné graph.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Gange et al.

(⟨⟨π1, E1⟩⟩ ▽▽⟨π2, E2⟩):
E ′ := stable-edges(E1, E2)
return ⟨⟨π1, E ′⟩⟩

reflect(⟨π , E⟩):
return ⟨⟨π , E⟩⟩

reify(⟨⟨π , E⟩⟩):
δR := ∅

for each x ∈ V :
δR := δR ∪ Dijkstra(⟨π , E⟩, x)

δB := close-assignment(⟨π , E ∪ δR ⟩,v0)
return ⟨E ∪ δR ∪ δB ⟩

stable-edges(E1, E2):

Erel :=
{
x

k1
−−→y

�� x k2
−−→y ∈ E2,k1 = min(wtE1 (x,y),wtE1 (x,v0,y),k2 ≤ k1 < ∞

}
∪
{
x

k1
−−→y

�� x k1
−−→y ∈ E1,wtE2 (x,v0,y) ≤ k1

}
src+ :=

{
(x,wtE1 (x,v0),wtE2 (x,v0))

�� x ∈ V ∧ (wtE1 (x,v0) , ∞) ∧ (wtE1 (x,v0) > wtE2 (x,v0))
}

src− :=
{
(x,wtE1 (x,v0),wtE2 (x,v0))

�� x ∈ V ∧ (wtE2 (x,v0) , ∞) ∧ (wtE1 (x,v0) < wtE2 (x,v0))
}

dest+ :=
{
(y,wtE1 (v0,y),wtE2 (v0,y))

�� y ∈ V ∧ (wtE1 (v0,y) , ∞) ∧ (wtE1 (v0,y) > wtE2 (v0,y))
}

dest− :=
{
(y,wtE1 (v0,y),wtE2 (v0,y))

�� y ∈ V ∧ (wtE2 (v0,y) , ∞) ∧ (wtE1 (v0,y) < wtE2 (v0,y))
}

Ebound := stable-implicit(src+, dest−) ∪ stable-implicit(src−, dest+)
return Erel ∪ Ebound

stable-implicit(src, dest):
E := ∅

for((s,k1,k ′1) ∈ src, (d,k2,k ′2) ∈ dest):
if(k1 + k2 ≥ k ′1 + k

′
2):

E := E ∪ {s
k1+k2
−−−−−→d}

return E

Fig. 23. Isolated widening for split normal graphs. Function close-assignment was given in Figure 7.

Table 2. Translating Octagons constraints to Zones constraints over V±.

Octagons constraint Zone constraints
y − x ≤ k y+ − x+ ≤ k , x− − y− ≤ k
x + y ≤ k x+ − y− ≤ k , y+ − x− ≤ k
−x − y ≤ k x− − y+ ≤ k , y− − x+ ≤ k
x ≤ k x+ − x− ≤ 2k
x ≥ k x− − x+ ≤ −2k

Notice how the need for the variable v0 disappears as we represent a lower bound of x by an
edge from x+ to x− and an upper bound by an edge from x− to x+. For example, x ≥ 5, which had
the Zones expression v0 − x ≤ −5, is now expressed as x− − x+ ≤ −10. Bounds information resides
in edges of form v

k
−→o(v).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

A Fresh Look at Zones and Octagons 1:29

x+

x− y+

y−

z+

z−
4 -3

4 -3

20 -24

x+ x− y+ y− z+ z−

x+ 0 0 ∞ ∞ ∞ ∞

x− 2 0 ∞ ∞ 4 ∞

y+ ∞ ∞ 0 -2 ∞ ∞

y− ∞ ∞ 4 0 ∞ -3
z+ ∞ ∞ -3 ∞ 0 ∞

z− 4 ∞ ∞ ∞ ∞ 0

(a) (b)

Fig. 24. (a) Miné graph representing the Octagons constraints x ∈ [0, 1], y ∈ [1, 2], y − z ≤ −3, x + z ≤ 4, and
(b) the corresponding difference bound matrix.

Example 6.1. Consider the set of Octagons constraints x ∈ [0, 1], y ∈ [1, 2], y − z ≤ −3, x + z ≤ 4.
The corresponding difference logic constraints are x+ − x− ≤ 2, x− − x+ ≤ 0, y+ − y− ≤ 4,
y− − y+ ≤ −2, y+ − z+ ≤ −3, z− − y− ≤ −3, x+ − z− ≤ 4, z+ − x− ≤ 4. The graph representation is
shown in Figure 24(a) and the (traditional) matrix representation is shown in Figure 24(b). □

It will be useful to have a name for the set of edges (in set E) that link the two representatives x+
and x− of variable x . We define

BE =
{
v

k
−→o(v) ∈ E

�� v ∈ V±
}

For use in Figure 26 we also define dual(u
k
−→v) = o(v)

k
−→o(u).

6.2 Closures
In the graph representation, Zones required a closure operation that is nothing but an all-pairs
shortest path calculation. The case of Octagons is more complicated and calls for three different
closure principles [49]. The following applies to abstract states of the form ⟨π , E⟩.

First, a graph E must be kept coherent, that is, it must respect the intended roles of variables x+
and x− (for example, each constraint x− −y− ≤ k entails y+ − x+ ≤ k). More precisely, E is coherent
iff

wtE (x,y) = min(wtE (x,y),wtE (o(y),o(x))) for all x,y ∈ V± (8)
Second, we have a “triangle” principle similar to (1). We say that E is tr-closed iff

wtE (x, z) = min(wtE (x, z),wtE (x,y) + wtE (y, z)) for all x,y, z ∈ V± (9)

It is not hard to see that tr-closure preserves coherence, that is, the tr-closure of a coherent graph
is coherent.

Finally, the extraction of difference constraints that are implicit consequences of variable bounds
is more cumbersome than in the Zones case. This is because bounds information no longer can be
found simply by inspecting edges incident on a single node (v0). Instead we must take into account
how variable pairs v+,v− are semantically linked. We say that E is strengthened iff

wtE (x,y) = min
(
wtE (x,y),

wtE (x,o(x)) +wtE (o(y),y)

2
)
for all x,y ∈ V± (10)

The function strengthen, defined by

strengthen(E) = E ⊗
{
x

k
−→y

�� k = min
(
wtE (x,y),

wtE (x,o(x)) +wtE (o(y),y)

2
)}

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Gange et al.

is a lower closure operator on (E, ⊑). The function strengthen preserves both coherence and tr-
closure.
The role of strengthening of E is to make implicit binary relations explicit—those that are

consequences of bounds constraints.

Example 6.2. Consider E = {x+
−4
−−→ x−,y−

6
−→y+}. Strengthening adds the edge x+

1
−→y+ (and,

coherently, y−
1
−→x−). The effect is to make the binary relation y −x ≤ 1 explicit (it is a consequence

of the variable bounds x ≥ 2 and y ≤ 3). □

The combination of properties (8)–(10) is usually referred to as strong closure for Octagons [46].
Bagnara et al. [3] established that closure of a coherent Octagons DBM can be restored by a
single application of the Bellman-Ford algorithm and a propagation through the graph with the
strengthening step. The time taken for strengthening is linear and relatively negligible when the
number of variables becomes larger. However, the time required for tr-closure in the Octagons
domain is much worse than for Zones, because the number of vertices is doubled. As this closure is
cubic in the number of vertices, a time penalty factor of about 8 can be expected.

7 SNF OCTAGONS
Now we adapt the ideas from Section 5 to Octagons constraints in split normal form. We refer to
the resulting abstract interpretation as “SNF Octagons”.
As discussed in Section 6, the graph representation of Octagons omit the v0 vertex, instead

representing bounds on a variable x as directed edges between x+ and x−. Again, we assume
wtE (x, x) = 0 for all x ∈ V±, and we take the absence of an edge (x,y) to mean wtE (x,y) = ∞.

A Miné graph E is in split normal form iff:
• E \ BE is coherent and tr-closed.
• For every path v → u → · · · → o(v) in E, there is an edge v

k
−→ o(v) such that k ≤

wtE (v,u, . . . ,o(v)).
This expresses the same intent as split normal form for Zones. In particular,

• the graph explicitly stores the strongest binary constraints that are derivable from other
binary constraints (but not necessarily those that can be derived from variable bounds); and

• all variable bounds are explicit.

7.1 Weak Closure
The concept of tr-closure is exactly the same as for Zones. The role of the potential function is
likewise unchanged, as is the way it induces a slack graph. However, the potential function is now
a function π : V± → Z, and π provides, for a satisfiable set of constraints, a model in the form of
λv . (π (v+) + π (v−))/2 (if an integer solution is required, rounding will provide such a solution).
Hence many of the functions we introduced for SNF Zones in Section 3, including close-edge,
close-assignment, close-meet, and close-widen, can be reused for SNF Octagons.

Our task now is to define abstract operations for Octagons in split normal form. Loosely, for each
abstract operationOp assumed towork on strongly closed graphs, we need to design a corresponding
abstract operation Op ′, such that for each graph E in split normal form, Op(strengthen(E)) =
strengthen(Op ′(E)).
Again, we want operations to act incrementally, utilizing the split normal form. The helper

function update-boundsO , shown in Figure 25, is similar to the one for SNF Zones. It ensures that
bounds information is not lost when the set δ of binary edges gets added to E. It is used in other
operations to extend δ with bounds constraints that are consequences of δ ∪ E.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

A Fresh Look at Zones and Octagons 1:31

update-boundsO (E, δ)

boundd :=
{
o(d)

ke+k
−−−−→d

�� o(d) ke
−−→s ∈ E ∧ s

k
−→d ∈ δ ∧ ke + k < wtE (o(d),d)

}
bounds :=

{
s
ke+k
−−−−→o(s)

�� d ke
−−→o(s) ∈ E ∧ s

k
−→d ∈ δ ∧ ke + k < wtE (s,o(s))

}
return δ ∪ boundd ∪ bounds

Fig. 25. Updating variable bounds for SNF Octagons, cf. Figure 16.

add-edgeO (⟨π , E⟩, e)
Eadd := E ∪ {e, dual(e)}
π ′ := restore-potential(π , e, Eadd)
if (π = inconsistent)

return ⊥

δ := close-edge(e, Eadd)
return⟨π ′, Eadd ⊗ update-boundsO (E, δ)⟩

Fig. 26. Adding an edge to an Octagons graph. The function close-edge was defined in Figure 4 and restore-
potential was defined in Figure 5.

7.2 Ordering
Entailment checks are implemented as for SNF Zones, mutatis mutandis. We have E1 ⊑ E2 iff, for
every x

k
−→y ∈ E2:

min
(
wtE1 (x,y),

wtE1 (x,o(x)) + wtE1 (o(y),y)
2

)
≤ k

7.3 Variable Elimination
To eliminate a variable v ∈ V from graph E, we simply remove the two nodes v+ and v− and all
edges incident on these two nodes. As is the case for SNF Zones, vertex removal preserves split
normal form, so no further closure is required.

7.4 Constraint Addition
Adding an Octagons constraint follows the same sequence as in Section 5: construct an updated
potential function, then restore split normal form by closing over the new edges. The only change
required is, when addingu

k
−→v , wemust preserve coherence by also adding the dual edgeo(v)

k
−→o(u).

Figure 26 gives the algorithm to add an edge to a graph and restore closure. The functions close-edge
and restore-potential from Section 3.3 can be reused.

7.5 Assignment
The abstract operation for an assignment statement is analogous to that for SNF Zones. The
pseudo-code is shown in Figure 27.

7.6 Meet
The meet operator identifies information that is shared by two abstract states. In classical imple-
mentations of Octagons, this can be done simply by taking the point-wise minimum of weights. We,
however, must be more careful, just as in the definition of meetZ . The algorithm for SNF Octagons
meet is shown in Figure 28. It takes the point-wise minimum of two graphs, computes a valid

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Gange et al.

assignmentO(⟨π , E⟩, [[x := S]])
π ′ := π [x 7→ eval-expr(π , S)]
E ′ := E ∪ edges-of-assign(E, [[x := S]])
δ := close-assignment(⟨π ′, E ′ \ BE′⟩, x)
return ⟨π ′, E ′ ⊗ δ⟩

Fig. 27. Abstract assignment in the SNF Octagons case. The functions eval-expr and close-assignment were
defined in Figure 7.

meetO (⟨π1, E1⟩, ⟨π2, E2⟩)
E := E1 ⊗ E2
π := compute-potential(E, π1)
if (π = inconsistent)

return ⊥

δD := (E1 ⊟ E2) \ BE
δC := close-meet(π , E \ BE , E1, E2)
return ⟨π , E ⊗ update-boundsO (E, δD ∪ δC)⟩

Fig. 28. The meet of abstract states in split normal form for Octagons. The function compute-potential was
defined in Figure 10, close-meet in Figure 11.

potential, and finally restores closure, mirroring the definition of meetZ . The compute-potential
function is the same Bellman-Ford variant used for Zones (Figure 10). It is instructive to compare
the definitions of meetZ and meetO .

7.7 Join
As is the case for SNF Zones, we must take care not to lose any implicit relational properties when
performing a join operation. A case analysis of the sources of implied binary constraints that must be
made explicit runs exactly as in Section 5.4. To discover relevant binary constraints that are entailed
by bounds constraints, we proceed as for SNF Zones. The variable pairs can be collected by sorting
the variables into groups by siдn(wtE1 (x+, x−) −wtE2 (x

+, x−) and siдn(wtE1 (y−,y+) −wtE2 (y
−,y+).

Owing to coherence, we need only consider edges x+ −→x− and y− −→y+ in the search for edges
x −→y to add. The resulting join algorithm for Octagons in split normal form is shown in Figure 29.
Note that since both π1 and π2 are valid potential functions, we can choose either for the result.

Example 7.1. Consider the constraint sets C5 = {x ≥ 4,y ≥ 1} and C6 = {x + y ≥ 7}. The
corresponding graphs in split normal form are shown in Figure 30. We find split-relsO (E1, E2) =
{x+

−5
−−→y−,y+

−5
−−→x−}, whereas split-relsO (E2, E1) = ∅. Also, in this case, src+ = src− = ∅, and so

E ′ = ∅. The join in this case is simply

{x+
−8
−−→x−,y+

−2
−−→y−, x+

−5
−−→y−,y+

−5
−−→x−} ⊕ {x+

−7
−−→y−,y+

−7
−−→x−}

the result if which is shown in Figure 30(c). □

Example 7.2. Consider the constraint sets C7 = {x ≥ 1,y = 1, z = 2} and C8 = {x ≤ 1,y = 2, z =
3}. The corresponding graphs in split normal form are shown in Figure 31. In this example, split-rels
finds no new edges of interest. The join algorithm calculates src+ = {(y+,−1,−2), (z+,−2,−3)}

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

A Fresh Look at Zones and Octagons 1:33

joinO (⟨π1, E1⟩, ⟨π2, E2⟩)
E ′
1 := E1 ⊗ split-relsO (E1, E2)

E ′
2 := E2 ⊗ split-relsO (E2, E1)

src+ :=
{
(x, k12 ,

k2
2)

�� x ∈ V± ∧ (k1 = wtE1 (x,o(x)) , ∞) ∧ (k2 = wtE2 (x,o(x))) ∧ (k1 > k2)
}

src− :=
{
(x, k12 ,

k2
2)

�� x ∈ V± ∧ (k1 = wtE1 (x,o(x))) ∧ (k2 = wtE2 (x,o(x)) , ∞) ∧ (k1 < k2)
}

E ′ := bound-rels
(
src+,

{
(o(x),k,k ′)

�� (x,k,k ′) ∈ src−
})

∪

bound-rels
(
src−,

{
(o(x),k,k ′)

�� (x,k,k ′) ∈ src+
})

E := E ′ ⊗ (E ′
1 ⊕ E ′

2)

return ⟨π1, E⟩

split-relsO (E1, E2)
E := ∅

for each x
k
−→y ∈ E2 \ BE

k ′ := wtE1 (x ,o(x))+wtE1 (o(y),y)
2

if (k ′ < wtE1 (x,y))
E := E ∪ {x

k ′
−→y}

return E

Fig. 29. Join of abstract states in split normal form for Octagons. bound-rels was defined in Figure 18.

x+

x− y+

y−

-8 -2

x+

x− y+

y−
-7

-7

x+

x− y+

y−
-5

-5

(a) (b) (c)

Fig. 30. (a) The graph for C5 from Example 7.1, in split normal form. (b) The graph for C6. (c) Their join.

x+

x−

y+

y−

z+

z−

-2 -22 -44

x+

x−

y+

y−

z+

z−

2 -44 -66

x+

x−

y+

y−

z+

z−

-24 -46

1

-1

-1

1
(a) (b) (c)

Fig. 31. (a) Split normal form constraint graph for C7 in Example 7.2. (b) The graph for C8. (c) Their join.

and src− = {(y−, 1, 2), (z−, 2, 3)}. From this, bounds-rel deduces the four edges y+
1
−→z+, z+

−1
−−→y+,

y−
−1
−−→ z−, and z−

1
−→ y1 (preserving coherence). Thus the graph E ′ in this example captures the

constraint z−y = 1 which was shared, but kept implicit, by the two input graphs. (Other constraints
that are implicit in the input graphs, such as y ≤ x in E1 and x ≤ y − 1 in E2, will simply fail to
remain consequences in the resulting join.) The graph for the join is shown in Figure 31(c). □

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Gange et al.

compute-potential-integer(E, π)
π := compute-potential(E, π)
E ′ := ∅

for each x
y
−→k ∈ E

if (π (x) + k − π (y) = 0)
E ′ := E ′ ∪ {x

0
−→y}

for each x ∈ V
if (x+ and x− are in the same SCC of E ′)

if (π (x+) − π (x−) is odd)
return inconsistent

return π

Fig. 32. Additional checks to ensure integer satisfiability of Octagons constraints.

7.8 Widening
The use of isolated widening carries over to Octagons, and the algorithms from Figure 23 can be
adapted, in the exact same manner as the join operation from Zones was adapted to the Octagons
case. We omit the details.

7.9 Handling Integer Constraints
Using Zones for integer variables is straightforward. If all constants arising in difference constrains
are integer that will only generate integer bounds which are optimal. So for the Zones abstract
domain it does not matter whether the variables involved are supposed to range over integers,
rational numbers, or reals. For Octagons, the case is different, because so-called tightening is
required: The strong closure of Octagons over integers also requires that the Miné graph is tightened,
that is, it satisfies (11) below.

∀v ∈ V±,wtE (v,o(v)) = 2 × ⌊
wtE (v,o(v))

2
⌋ (11)

Tightening is required because the edge x−
k
−→x+ corresponds to x+ − x− ≤ k , or 2x ≤ k and hence

x ≤ ⌊k/2⌋. Hence if k is odd, the bound in x needs to be rounded down. The same thing applies
with edges x+

k
−→x−.

To adjust Octagons for integers we need to make two adjustments. First we need to extend the
compute-potential function to also enforce integer, rather than just real, satisfiability. This is based
on a method devised by Lahiri and Musuvathi [41], which simply checks that any zero length cycles
in the Octagons graph do not force x+ and x− to be an odd distance apart, effectively forcing x to
take a non-integer value π (x+)+π (x−)

2 . The pseudo-code giving the extended compute-potential for
integers is shown in Figure 32.

We also need to ensure that new bounds are tightened. The only way new non-tightened bounds
can arise is by tr-closure of binary edges, not bounds edges. In the meet algorithm of Figure 28, δb
contains all such new edges. Thankfully we can simply tighten these bounds individually since, by
a result by Schutt and Stuckey ([54] Lemma 6), we know that any consequent bound tightening
will have been created by the tr-closure. The pseudo-code for this is shown in Figure 33.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

A Fresh Look at Zones and Octagons 1:35

tighten(E)

return
{
v

2 ⌈ k2 ⌉
−−−−→o(v)

�� v k
−→o(v) ∈ BE

}
∪ (E \ BE)

Fig. 33. Tightening bounds for Octagons constraints.

8 EXPERIMENTS AND RESULTS
In this section, we provide a report on the experiments we have conducted to evaluate the relative
speed and precision of Zone and Octagon implementations. At a first glance, given implementations
that are sound, performing this kind of comparison is a straightforward matter. If different imple-
mentations provide identical functionality for the abstract operations (say, the theoretically optimal
precision) then the comparison should in principle be about speed only. However, in practice there
are confounding factors at play:
(1) It is necessary, in large-scale experiments, to impose restrictions on the use of resources—we

need to allow for “time out” or “memory out” as possible outcomes for a given problem
instance. As a result, speed will sometimes determine precision.

(2) Widening is an abstract operation that, by its nature, does not come in an optimal, or even
“natural” version. Different implementations will make different widening decisions, with
different speed/precision consequences. In the context of experimental resource restrictions,
there is not even a simple tradeoff at play, between speed and precision. For example, a
relatively slow implementation that readily surrenders precision, either by resorting to
widening earlier, or by making larger (less precise) widening steps, may well end up delivering
the more precise result, simply because an alternative implementation, albeit generally faster,
ends up exhausting its resources while chasing the more precise result. Note that an analysis
that is implemented as Kleene iteration is not an “anytime” analysis; stopped prematurely,
the analysis will not generally have arrived at a correct result, and hence it has to report
“don’t know” whenever it exhausts its resources.

(3) “Precision” in itself is rarely the goal. Program analysis is usually performed for a purpose, and
it is the application that determines whether “more precise” will translate to a better outcome.
Following Singh et al. [58], we evaluate precision in the context of program verification.

8.1 ResearchQuestions
We aim to answer three questions:

RQ1: Is Split Normal Form effective at exploiting sparsity?
RQ2: How does Split Normal Form widening affect precision in practice?
RQ3: How does Variable Packing interact with Split Normal Form?

The first two questions illuminate the relative advantages offered by different data structures
and algorithms, as used in two well understood program analyses. Relatively simple controlled
experiments can provide answers. The third question investigates an alternate approach to tackling
(phantom) density, namely so-called variable packing.

8.2 Implementation
SNF Zones and Octagons have been implemented in Crab [21], a parametric framework for modular
construction of abstract interpreters. Crab provides both intra- and inter-procedural analyses with
a number of numerical abstract domains, including the ELINA domains. Both Zones and Octagons
support several graph representations: adjacency hash-table, adjacency Patricia trees, and a hybrid

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1:36 Gange et al.

representation using dense matrices for weights and sparse sets. For Zones, we have only used the
hybrid representation, since it is the most efficient, as reported in earlier work [28]. For Octagons,
however, the hybrid representation sometimes consumes too much memory. Hence we also evaluate
the Octagons implementation using Patricia Tries to represent the adjacency lists of the SNF graphs.

8.3 Experiment Design
8.3.1 Choice of Baseline Abstract Domains. For Octagons, the 2015 paper by Singh et al. [58]
established the “OptOctagon” implementation (now part of the ELINA library) as the fastest
available at the time. An experimental evaluation against the standard Apron implementation
showed significant, sometimes order-of-magnitude speedup (see Section 9.5).While OptOctagonwas
not directly compared against PPL [4], the authors pointed out that PPL and Apron use very similar
data structures and algorithms. As part of a subsequent 2018 paper by Singh and colleagues [59], a
Zones implementation was added to the ELINA library. As these ELINA analyses [23] remain the
state of the art, we compare our Zones and Octagons implementations against them. The ELINA
implementations that are available on the Crab platform [21] allow for a meaningful comparison.

Variable packing, that is, grouping variables into packs and only inferring relationships between
variables in the same pack, has long been a favoured approach to speeding up Zones and Octagons
analyses. Therefore, we also present a comparison to variable packing here, using the most precise
variant of variable packing [61]. As Venet and Brat [61], we compute the packs dynamically, without
a size limit. A union-find data structure is used to maintain equivalence classes of variables, based
on discovered data dependencies. Lattice operations such as join, meet, narrowing and widening
may merge equivalence classes. All the transfer functions can be implemented component-wise
(that is, separately on each equivalence class) after the equivalences classes have been updated
accordingly. For instance, after an operation x := f (y, z), all three variables x , y, and z are in the
same equivalence class. Note that, in the worst case, all program variables could be merged into a
single equivalence class, which would be the same as not using packs. The implementation of the
variable packing domain is not part of Crab, but we have made it available at https://zenodo.org/
record/4740814#.YJQiOeZOmCM.

8.3.2 Choice of Benchmarks. The current state of practice of benchmarking Zones, Octagons and
allied analyses is somewhat patchy, with no large commonly used set of benchmarks being available.
Much of the literature uses benchmark sets sourced from flight or space applications, and these
benchmark sets are not publicly available. We make use of the limited supply of programs with
reliable assertions that we find publicly available.
Since we conduct comparisons with the state-of-the-art ELINA implementations, we begin by

utilising the benchmark set used in ELINA publications: the 2758 programs from SV-COMP, except
we use the SV-COMP 2019 [60] version. We have chosen the categories that primarily rely on
numerical reasoning: ControlFlowInteger, Arrays, Loops, and DeviceDrivers64. We only consider
programs expected to be safe since Crab cannot prove a program is definitely unsafe, and since, for
each unsafe program in the benchmark suite, there is already a safe version.

The SV-COMP suites do not include benchmarks with large numbers of variables, and they tend
to involve many loops. This skews experiments somewhat, making much use of widening, which
generates sparse DBMs. Moreover, the programs were selected for the SV-COMP competition
to challenge path-sensitiveness and pointer reasoning capabilities of the verification tools. In
our evaluation we soon found that they do not usually require invariants involving difference
constraints, and even more rarely do they require binary octagon constraints. In fact, a simple
interval analysis produced similar results to Zones and Octagons. Hence, while they test fixed-point

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://zenodo.org/record/4740814#.YJQiOeZOmCM
https://zenodo.org/record/4740814#.YJQiOeZOmCM

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

A Fresh Look at Zones and Octagons 1:37

finding prowess, the SV-COMP benchmarks alone do not provide a serious stress test for Zones
and Octagons analysis.

To mitigate the limitations of the SV-COMP benchmarks and to explore how well Split Normal
Form performs on programs that produce larger and denser DBMs, and cases where binary con-
straints are crucial for successful verification, we include a second benchmark set: all of the 260
publicly available eBPF sample programs [22]. An eBPF (extended Berkeley Packet Filter) program
uses a subset of C to implement Linux kernel extensions. These programs are all free of loops
and functions. Moreover, they can only access a fixed set of memory regions, known at compile
time, making eBPF programs very amenable to abstract interpretation. These programs are still
challenging, as an analysis must track binary relations between program registers, and it must
reason precisely about memory contents. Each memory location is mapped to a dimension in the
numerical domain, and therefore, the underlying numerical domain must represent a large number
of dimensions. That makes analysis challenging with both Zones and Octagons. All eBPF programs
are annotated with assertions to check for memory safety and information flow security [30].

8.3.3 C and eBPF Static Analyzers. Crab does not directly analyze C or eBPF programs. Instead,
Crab analyzes programs represented in its own intermediate representation (CrabIR) which are
more amenable to static analysis.
For analysis of SV-COMP programs (written in C), we utilize Clam [13] which translates from

LLVM bitcode to CrabIR. Clam runs a pointer analysis [40] to statically partition the heap into
memory regions that can be translated to uni-dimensional arrays supported by the Crab language.
We choose the array smashing domain [8] parameterized by a reduced product of a Boolean and a
numerical domain: (for example, Zones or Octagons). All functions are aggressively inlined.

For the analysis of eBPF programs, we use the tool PREVAIL [52] to translate eBPF programs to
CrabIR. PREVAIL uses a precise Crab memory domain [30] parameterized by a Crab numerical
relational domain. The memory domain is used to model each program memory region and it maps
each memory region content to a dimension in the relational numerical domain. The memory
domain keeps track of which memory cells might be affected by a memory write and whether the
write can be modelled as a “strong update” or not.

8.3.4 Reproducibility. Experiments have only involved publicly available benchmark suites. Every
experiment has been carried out on a 2.1GHz AMD Opteron processor 6172 with 32 cores and 64GB
on a Ubuntu 18.04 Linux machine. From those 32 cores, we used 16 cores to run multiple instances of
Crab in parallel, but each instance was executed sequentially. We have compared four DBM-based
implementations: our Zones and Octagons in Split Normal Form (SNF Zones and SNF Octagons)
and the Zones and Octagons provided by ELINA (ELINA Zones [59] and ELINA Octagons [58])11.
We use SNF Octagons and SNF Octagons (PT) to refer to Octagons in Split Normal Form using the
hybrid representation for adjacency lists, and Patricia Tries, respectively. For SNF Zones we only
use the hybrid representation.

8.4 Results
In this section and the next, we present the experimental results as they pertain to each research
question.

8.4.1 RQ1: Is Split Normal Form effective at exploiting sparsity? Figure 34 shows the
efficiency of all the domains on the set of SV-COMP programs. From the initial 2758 programs, we
removed those on which the Clam front-end reached timeout or memory limits of 8GB, ending up
11Available at https://github.com/eth-sri/ELINA, commit 6f5928694c1a2f16c36769bbf161c356648628eb. Accessed on
December 9th, 2020.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://github.com/eth-sri/ELINA

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 Gange et al.

900 950 1000 1050
Number of Programs

0

25

50

75

100

125

150

175

An
al

ys
is

Tim
e

(s
ec

)

SNF Zones
SNF Octagons
ELINA Zones
ELINA Octagons

(a)

0 25 50 75 100 125 150 175 200

SNF Zones
0

25

50

75

100

125

150

175

200

EL
IN

A
Zo

ne
s

Analysis Time (sec)

0 25 50 75 100 125 150 175 200

SNF Octagons
0

25

50

75

100

125

150

175

200
EL

IN
A

Oc
ta

go
ns

Analysis Time (sec)

(b) (c)

Fig. 34. Experiments on SV-COMP programs with timeout of 180 seconds and memory limit of 8GB. The
marker ● represents domains finished before exhausting resources, ✖ represents timeout, and ◆ represents
memory-out. The size of a marker reflects the number of scatter points at that location.

with 2549 programs. We tried two different timeouts of 3 and 5 minutes. The plots obtained were
remarkably similar, suggesting that our results are not sensitive to the choice of timeout limit. The
results shown are for a timeout of 3 minutes. At the top (a), a cactus plot compares the analysis
time (in seconds) of the domains. Below that, scatter plots compare analysis time (in seconds) of (b)
SNF Zones against ELINA Zones, and (c) SNF Octagons against ELINA Octagons.

Figure 35 shows the efficiency of all the domains on the set of eBPF programs. For these programs,
timeouts were not needed to achieve termination in a reasonable time. At the top (a), a cactus plot
compares analysis time (in seconds) of the domains on a logarithmic scale. Below that are scatter
plots comparing analysis time (in seconds) of (b) SNF Zones against ELINA Zones, and (c) SNF
Octagons against ELINA Octagons.

The plots in Figure 34(b-c) show that maintaining sparsity is crucial: Each domain in Split Normal
Form is significantly faster than the corresponding ELINA domain. Similar conclusion can be drawn
from plots in Figure 35(b-c), even if DBMs are much more dense due to the lack of widening.
The implementations of the domains that use Split Normal Form are significantly faster than the
corresponding ELINA implementations (approximately one order of magnitude).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

A Fresh Look at Zones and Octagons 1:39

190 200 210 220 230 240 250 260
Number of Programs

100

101

102

103

An
al

ys
is

Tim
e

(s
ec

)

SNF Zones
SNF Octagons
ELINA Zones
ELINA Octagons

(a)

0 10 20 30 40 50 60 70

SNF Zones
0

10

20

30

40

50

60

70

EL
IN

A
Zo

ne
s

Analysis Time (sec)

0 25 50 75 100 125 150 175 200

SNF Octagons
0

25

50

75

100

125

150

175

200
EL

IN
A

Oc
ta

go
ns

Analysis Time (sec)

(b) (c)

Fig. 35. Experiments on eBPF programs.

8.4.2 RQ2:Howdoes Split Normal Formwidening affect precision in practice? To answer
this question, we focus on SV-COMP benchmarks, since eBPF programs are free of loops. In principle,
if unlimited resources were available, we should not expect to see large differences between
different implementations, assuming transfer functions are more or less identical. However, as
discussed, resource limits can interfere with results, and widening can be implemented differently.
Moreover, some abstract operations (assignment, for example) are less than straightforward and
could conceivably be done differently in different implementations.

Table 3 compares the precision of SNF Zones, SNF Octagons, ELINA Zones, and ELINA Octagons
for the SV-COMP test suite. Column Prog is the total number of programs after filtering out front-
end timeouts and crashes. Columns TO and MO are the number of timeouts and memory-outs of
the analyses, respectively. Proven Safe is the number of programs proven safe, Inconclusive is the
number of programs an analysis cannot prove safe, Assertions is the total number of assertions
checked by the analysis (if the analysis finished successfully), and Proven Assertions is the total
number of proven assertions.

Table 4 uses the same data, but it shows the pairwise comparisons of SNF Zones against ELINA
Zones and SNF Octagons against ELINA Octagons analyses. For each pair, we restrict our attention
to the programs that were analyzed by both analyses without exhausting the time and memory
limits.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1:40 Gange et al.

Table 3. Comparing the precision of SNF Zones, SNF Octagons, ELINA Zones, and ELINA Octagons on
SV-COMP programs with timeout of 180 seconds and memory limit of 8GB.

Domain Prog Errors Proven Safe Inconclusive Assertions Proven
TO MO Assertions

SNF Zones 2549 169 353 1622 405 17355 15972
SNF Octagons 2549 163 448 1553 385 11605 10522
ELINA Zones 2549 166 751 1290 342 2423 1899

ELINA Octagons 2549 219 739 1264 327 2146 1659

Table 4. Pairwise comparisons for precision of SNF Zones against ELINA Zones and SNF Octagons against
ELINAOctagons on SV-COMPprogramswith timeout of 180 seconds andmemory limit of 8GB but considering
only programs for which both domains of each pair terminated before resources are exhausted.

Domain Prog Proven Safe Inconclusive Assertions Proven Assertions
SNF Zones 1632 1296 336 2423 1918
ELINA Zones 1632 1290 342 2423 1899
SNF Octagons 1591 1264 327 2146 1659
ELINA Octagons 1591 1264 327 2146 1659

Table 5. Pairwise comparison for precision of SNF Zones against ELINA Zones and SNF Octagons against
ELINA Octagons on each widening point in SV-COMP programs with timeout of 180 seconds and memory
limit of 8GB but considering only programs for which each pair of domains terminated before resources are
exhausted.

Widening Points Same Precision SNF More Precise ELINA More Precise
Zones 20016 18975 1022 19
Octagons 17769 17696 41 14

Table 5 shows data similar to those of Table 4 by comparing SNF Zones against ELINA Zones
and SNF Octagons against ELINA Octagons. Table 5, however, shows the precision differences at
each widening point.
The tables suggest that there is no inherent difference between ELINA Octagons and SNF

Octagons when it comes to precision. If there are differences in widening strategy, they do not
seem to interfere significantly with the analysis overall. The tables show, however, a clear loss of
precision for ELINA Zones, relative to SNF Zones. As discussed, widening is not the only possible
source of differences, and the observed differences could possibly be due to implementation details
for abstract transformers—abstract assignment in particular leaves room for variation.

8.5 RQ3: How does Variable Packing interact with Split Normal Form?
A final round of experiments were designed to contrast performance of the different abstract domain
implementations when combined with variable packing, to see how the different approaches to
reducing density compare.
Variable packing is a technique commonly used to improve the scalability of analyses based

on relational numerical abstract domains. The idea is to group program variables into “packs”
and then only infer relationships between variables in the same pack. Pack membership may be
determined before the analysis (static variable packing) or during the analysis (dynamic variable

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

A Fresh Look at Zones and Octagons 1:41

packing). The advantage is that analysis time (which tends to be cubic in the number of variables)
is reduced considerably, provided packs can be kept small. On the other hand, packing comes with
a non-negligible overhead, and its use makes the analysis sensitive to whatever criterion is used for
pack determination. The effect on precision is due to the fact that any actual relationship between
two variables is lost once the two have been placed in separate packs. Note that the extreme case
of variable packing, where each pack is a singleton, effectively gives us interval analysis [27].

8.5.1 Performance. Figures 36-38 show again the efficiency of all the domains on the set of SV-
COMP and eBPF programs, respectively, but this time comparing performance of each domain with
and without variable packing.

For the SV-COMP programs, note that packing applied to the SNF abstract domains usually leads
to a slowdown. This is in sharp contrast to what happens with the ELINA domains and an important
lesson from the experiment. It appears that packing removes information that was not needed in the
first place. Much of the benefit offered by variable packing is simply removal of phantom density
from the DBM representation—something that is already accomplished by the SNF representations.
Unlike the case of Zones, Figure 36(c) shows that packing can improve memory consumption of
SNF Octagons at the expense of losing precision. We also compare, in Figure 37(a)-(b), the efficiency
of SNF Octagons and APRON Octagons using variable packing (Pack+APRON Octagons). This
experiment verifies the immense value of variable packing as a companion for a simpler Octagon
implementation (APRON). Figure 37(a) shows that Pack+APRON Octagons is sometimes faster
and consumes much less memory than our SNF Octagons. Figure 37(b) shows the impact of using
Patricia Tries instead of the hybrid representation for SNF adjacency lists (SNF Octagons (PT)).
The impact is large: the use of Patricia Tries can significantly reduce memory consumption of SNF
Octagons, at the expense of a slower analysis.
For the eBPF programs (Figure 38), variable packing does lead to an increase in efficiency with

respect to the SNF abstract domains, although only a slight one for SNF Zones. Again this is
contrasted by the ELINA domains where the efficiency gained by packing is again significant.
The reason for the difference is that the information loss from variable packing makes the whole
analysis task simpler, so later abstract operations are simpler.

8.5.2 Precision. Table 6 compares precision of SNF Zones against Pack+SNF Zones, SNF Octagons
against Pack+SNF Octagons, ELINA Zones against Pack+ELINA Zones, ELINA Octagons against
Pack+ELINAOctagons, SNFOctagons (PT) against Pack+APRONOctagons on SV-COMP programs.
Note that for the SV-COMP programs there is not a great difference in precision, but this is expected
since the programs don’t require much relational reasoning in any case.
Regarding eBPF programs, each domain without variable packing was able to prove correct all

programs except for three, which require disjunctive reasoning. All five domains with variable
packing, Pack+SNF Zones, Pack+SNF Octagons, Pack+ELINA Zones, Pack+ELINA Octagons, and
Pack+APRON Octagons fail to prove the same 21 programs. This provides a stark contrast to the
SV-COMP programs, and demonstrates that variable packing can introduce significant imprecision.

9 RELATEDWORK
While there have been precursors for the use of difference constraints in program analysis (see
Bagnara’s thesis [2]), the development of the Zones and Octagons abstract domains is primarily
due to Miné [44–49]. Miné provided detailed algorithmic design and analysis, intersecting the two
important fields of abstract interpretation and constraint solving. On the abstract interpretation
side, the so-called “weakly relational” abstract domains, including Zones and Octagons, were a
response to the high runtime cost of using the much more expressive polyhedral abstract domain
developed and investigated by Cousot and Halbwachs [19].

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

1:42 Gange et al.

1500 1600 1700 1800 1900 2000
Number of Programs

0

25

50

75

100

125

150

175

An
al

ys
is

Tim
e

(s
ec

)

SNF Zones
SNF Octagons
SNF Octagons (PT)
Pack+ELINA Zones
Pack+ELINA Octagons
Pack+APRON Octagons

(a)

0 25 50 75 100 125 150 175 200

SNF Zones
0

25

50

75

100

125

150

175

200

Pa
ck

 +
 S

NF
 Z

on
es

Analysis Time (sec)

0 25 50 75 100 125 150 175 200

SNF Octagons
0

25

50

75

100

125

150

175

200
Pa

ck
 +

 S
NF

 O
ct

ag
on

s
Analysis Time (sec)

(b) (c)

0 25 50 75 100 125 150 175 200

ELINA Zones
0

25

50

75

100

125

150

175

200

Pa
ck

 +
 E

LI
NA

 Z
on

es

Analysis Time (sec)

0 25 50 75 100 125 150 175 200

ELINA Octagons
0

25

50

75

100

125

150

175

200

Pa
ck

 +
 E

LI
NA

 O
ct

ag
on

s

Analysis Time (sec)

(d) (e)

Fig. 36. Experiments with variable packing on SV-COMP programs with timeout of 180 seconds and memory
limit of 8GB. The marker ● represents domains finished before exhausting resources, ✖ represents timeout,
and ◆ represents memory-out. The size of a marker reflects the number of scatter points at that location.

The name “Zones” appears to have been used first by Miné in 2002 [47], but previous uses are
found in the model checking literature. The domain is presented as an instance of a general scheme
for the construction of certain relational abstract domains from non-relational “basis” domains, thus

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

A Fresh Look at Zones and Octagons 1:43

0 25 50 75 100 125 150 175 200

SNF Octagons
0

25

50

75

100

125

150

175

200

Pa
ck

+A
PR

ON
 O

ct
ag

on
s

Analysis Time (sec)

0 25 50 75 100 125 150 175 200

SNF Octagons (PT)
0

25

50

75

100

125

150

175

200

Pa
ck

+A
PR

ON
 O

ct
ag

on
s

Analysis Time (sec)

(a) (b)

Fig. 37. Experiments with APRON and variable packing on SV-COMP programs with timeout of 180 seconds
andmemory limit of 8GB. Themarker● represents domains finished before exhausting resources,✖ represents
timeout, and ◆ represents memory-out. The size of a marker reflects the number of scatter points at that
location.

Table 6. Pairwise comparisons for precision of SNF Zones against Pack+SNF Zones, SNF Octagons against
Pack+SNF Octagons, ELINA Zones against Pack+ELINA Zones, ELINA Octagons against Pack+ELINA Oc-
tagons, SNF Octagons (PT) against Pack+APRON Octagons on SV-COMP programs with timeout of 180
seconds and memory limit of 8GB but considering only programs for which both domains of each pair
terminated before resources are exhausted.

Domain Prog Proven Safe Inconclusive Assertions Proven Assertions
SNF Zones 1977 1585 392 12846 11734

Pack+SNF Zones 1977 1582 395 12846 11711
SNF Octagons 1932 1547 385 10357 9274

Pack+SNF Octagons 1932 1542 390 10357 9251
ELINA Zones 1632 1290 342 2423 1899

Pack+ELINA Zones 1632 1289 343 2423 1888
ELINA Octagons 1591 1264 327 2146 1659

Pack+ELINA Octagons 1591 1259 332 2146 1640
SNF Octagons (PT) 2000 1600 400 24331 21257

Pack+APRON Octagons 2000 1595 405 24331 21232

putting Miné’s earlier work [44, 45] in a broader context. “Octagons” appear under that name in a
paper from 2001 [46], although that domain too is given detailed coverage already in Miné’s masters
thesis [44]. Implementations were made available through the Apron static analysis library [36].

Miné’s work borrowed ideas from the model checking and constraint solving communities [32,
42, 55]. However, the program analysis problem is somewhat different to the problems addressed
by those communities, because program analysis uses constraint sets as descriptions of possible
runtime states. The focus is not entirely on the solutions to constraints. In particular, operations
such as join and widening are of no interest to constraint solving, but are essential components in
program analysis—to describe the runtime states that obtain at points of control flow confluence,
and to guarantee termination of analysis.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

1:44 Gange et al.

190 200 210 220 230 240 250 260
Number of Programs

100

101

102

103

An
al

ys
is

Tim
e

(s
ec

)

Analysis time (secs)
SNF Zones
SNF Octagons
ELINA Zones
ELINA Octagons
Pack+ELINA Zones
Pack+ELINA Octagons
Pack+APRON Octagons

0 5 10 15 20 25 30

SNF Zones
0

5

10

15

20

25

30

Pa
ck

+S
NF

 Z
on

es

Analysis Time (sec)

(a) (b)

0 5 10 15 20 25 30 35 40

SNF Octagons
0

5

10

15

20

25

30

35

40

Pa
ck

+S
NF

 O
ct

ag
on

s

Analysis Time (sec)

0 10 20 30 40 50 60 70

ELINA Zones
0

10

20

30

40

50

60

70
Pa

ck
+E

LI
NA

 Z
on

es
Analysis Time (sec)

(c) (d)

0 25 50 75 100 125 150 175 200

ELINA Octagons
0

25

50

75

100

125

150

175

200

Pa
ck

+E
LI

NA
 O

ct
ag

on
s

Analysis Time (sec)

0 10 20 30 40 50

SNF Octagons
0

10

20

30

40

50

Pa
ck

+A
PR

ON
 O

ct
ag

on
s

Analysis Time (sec)

(e) (f)

Fig. 38. Experiments on eBPF programs with variable packing.

9.1 Similar Abstract Domains
Simon, King and Howe [57] explored the use of more expressive TVPI (two variables per inequality)
constraints for program analysis. TVPI lifts the limit on coefficients that Octagons constraints
impose, namely that coefficients belong to the set {−1, 0, 1}. Simon, King and Howe [57] provided
polynomial-time algorithms for TVPI abstract operations, including widening.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

A Fresh Look at Zones and Octagons 1:45

A different generalisation of Octagons is the Octahedron abstract domain [14] which allows for
constraints that involve more than just two variables but maintains the limitation on coefficients
that they must be in {−1, 0, 1}. Algorithms for the abstract operations are given, based on a decision
diagram data structure invented for the purpose.
Numerous other abstract domains have been proposed which, compared to Octagons, provide

incomparable expressiveness. Generally the idea is to sacrifice some precision, in favour of better
performance. Some methods abandon the systematic tr-closure of relations (and work around the
resulting lack of a normal form for constraints). Constraints implied by closure may be discovered
lazily, or not at all. This is the case, for example, with Logozzo and Fähndrich’s Pentagon domain [43].
Template constraints [53] offer constraints of the same general form as polyhedral analysis, but
generally restrict, up front, the number (and shape) of constraints that can be in play.

9.2 Variable Packing
Variable packing provides an alternative approach to improving program analysis based on weakly
relational domains. It also rests on the observation that, usually, only few pairs or clusters of
variables are related. Variable packing consists of grouping variables into “buckets” or packs
according to some criterion, such as their joint appearance in an assignment statement. Packs
may be allowed to overlap. Then, instead of keeping a single zone or octagon as a program state
description, variable packing methods keep a set, each describing the relations that hold in a given
pack. With variable packing, one may hope to pay a superlinear computational cost only for lower-
dimensional sub-spaces. This idea was utilised in the Astrée analyzer [20], where it was found to
help scalability to a considerable extent. A dynamic variant was used in the C Global Surveyor [61].

Heo et al. [34] have suggested that machine learning can be helpful as part of a pre-analysis, to
determine, up front, variable clusters that are suitable for packing12. It is, however, worth stressing
that all approaches to variable packing are lossy, in the sense that optimal analysis would require
optimal choice of packs, and no variable packing approach guarantees that.
Simon and King [56] showed that, also in the case of polyhedral analysis [19] is it possible to

capitalise on the typical sparsity. They utilise, algorithmically, the fact that a given variable usually
appears in very few inequalities, albeit not through a change of representation, as we do. Their key
observation is that, for a sparse system of linear inequalities, variable elimination can be performed
efficiently with the Fourier-Motzkin approach, and, moreover, the calculation of convex hulls can
be done through clever use of variable elimination. As a result, Simon and King can avoid the
traditional “double description” representation and instead implement a polyhedral analysis that is
entirely matrix-based.
The Gauge domain proposed by Venet [62] can be seen as a combination of a similar kind of

dimensionality restriction and the use of weakly relational domains. In the Gauge domain, relations
are only maintained between program variables and specially introduced “loop counter” variables.
Variable packing is also applied by Singh et al. [58, 59] whose contributions we discuss in Section 9.5.

In Section 8.5 we saw the idea of variable packing working well for ELINA abstract domains, but
failing to have much impact for SNF domains. This should not be surprising: The role of variable
packing is to combat unnecessary density, but SNF domains are designed to preserve sparsity
throughout an analysis, that is, to avoid the introduction of phantom density in the first place.

12A related use of machine learning was recently proposed [33] to identify cases where the result of join operations can be
simplified, without undue loss of precision of the overall analysis.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

1:46 Gange et al.

9.3 Algorithmic Improvements
Important improvements to the performance of weakly-relation abstract domains were suggested
by Bagnara et al. [3]. The improvements benefited Octagons in particular, owing to the discovery of
a more efficient closure algorithm which substantially reduced the required number of coefficient
operations, compared to the algorithm described by Miné [49]. (However, similar to most of the
previous and subsequent work, the new algorithms still relied on the expensive strong closure.)
The improvement was implemented in the Parma Polyhedra Library (PPL) [4].

Bagnara et al. also designed better widening operators for these domains [3], allowing some
precision to be surrendered to improve analysis performance in the case of slow convergence.
The latter work identified the redundancy created by variable bounds, but only in the context
of widening. Later again, Bagnara et al. [5] reconsidered the representation of weakly relational
domains, proposing transitive reduction as a canonical form (“shapes”). Widening was then defined
with reference to the operand “shapes” rather than the graph itself. This way, redundant relations
could be ignored while performing widening, preventing any redundancy from being inherited in
the result. This idea too has been implemented in the PPL [4]. Since our split normal form avoids
the aforementioned redundancy, for us, standard widening results in a non-redundant system of
constraints, so no special widening is required.13
Chawdhary, Robbins and King [11] also present algorithmic improvements for the Octagons

domain, assuming the standard matrix-based implementation (built on DBMs). Their focus is on the
common use case where a single constraint is added/changed, that is, the explicit goal is an improved
algorithm for incremental closure. Chawdhary, Robbins and King implemented incremental closure
algorithms in OCaml, including for strong closure, as well as the case of D = Z, and compared
these experimentally, using randomly generated feasible Octagon constraints.

9.4 Phantom Density and Data Structure Improvements
All of the related work discussed so far is fundamentally based on the use of data structures
that are most suitable for dense graphs. The observation about “phantom density” made in the
introduction of the present paper suggests that Zones and Octagons analysis should be able to
capitalise on the inherent sparsity in typical problem instances, as illustrated in Example 5 and
verified experimentally in Section 8. The classical graph representations provide an elegant way of
capturing unary and binary constraints simultaneously, but it does not follow that they also lead to
the most efficient implementations.

While the focus of the present paper has been on Zones and Octagons, the idea of a split normal
form can be applied more generally to abstract domains where entailed constraint systems are stored
in a closed (or saturated) form. This is dependent on the underlying representation of the domain.
As presented by Simon, King and Howe [57], the TVPI domain is (just like octagons) represented
as a tr-closed graph, and the techniques proposed in the present paper could equally be applied to
TVPI. Similarly, the Octahedron [14] domain maintains a decision-diagram representation of all
nontrivial unit inequalities, which could likely benefit from a split representation. However, the
applicability of the idea only goes so far. While the convex polyhedron [19] domain also tracks
a set of constraints for each state (paired with a dual set of generators), its constraint system is
maintained in an irredundant (not closed) form, so splitting out monadic properties will not help
this abstract domain.
The “phantom density” observation goes back to Gange et al. [28], in the context of Zones

analysis and, independently, Jourdan [38, 39], in the context of Octagons analysis. Jourdan’s

13Gange et al. [29] discuss various problems that flow from a misalignment of syntax-based widening methods and their
semantic underpinning, and propose instead a more general view of widening.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

A Fresh Look at Zones and Octagons 1:47

dissertation [38] goes well beyond a study of the Octagons abstract domain. Its focus is on verified
static analysis, using the Coq proof assistant to establish the soundness of Verasco, an analysis
tool [38] for C#minor. Verasco also offers interval analysis, expression linearization [48], and
symbolic equalities, to improve the analysis of, for example, non-strict Boolean operations.

Jourdan observes that, although a strongly closed DBM gives the best abstract state, the strong
closure of Octagons often causes abstract states to be dense because of the strengthening step. He
aims, as we do, for preservation of weak closure and a set of operations that can preserve sparsity.
The notion of weak closure proposed by Jourdan is similar to the split normal form closure defined
in Section 7.1: both are used to avoid the density generated by the strengthening step. Jourdan [38]
showed that the abstract operators for the Octagons domain do not lose precision in the presence
of weak closure.

Similarly, the join operation given by Jourdan (for Octagons) is closely related to what we present
in Figure 29, although Jourdan’s operation is expressed at a much higher level. For other operations,
such as meet and constraint addition, our versions are necessarily more complex, owing to the
maintenance of potential functions—a price we pay for highly efficient operations overall. Jourdan
does not provide implementation details for abstract assignment. He observes that operations other
than join and constraint addition can remain unchanged for weakly closed Octagons, without loss
of precision—formal proofs of this are provided in his dissertation [38].
There are two main differences between Jourdan’s work (on Octagons analysis) and the work

presented in this paper. The first is our use of bespoke data structures and algorithms designed
specifically to exploit sparsity and enable minimal traversal of graphs (including the use of potential
functions). The second is our ability to runmeaningful experiments, comparing with similar analysis
tools, and to assess the impact, in practice, of more sophisticated data structures and algorithms for
this type of static analysis.

A rather different approach to reducing the size of matrices used to represent Zones and Octagons
is proposed by Chawdhary and King [10]. As in Apron’s Octagons implementation, matrix symmetry
(or coherence, in the case of Octagons) is utilized to obtain a half-matrix form, maintained as an
array of size 2n(n + 1) in the case of Octagons representations in the presence of n variables. Then
the array elements (GMP rationals) are replaced by pointers to two smaller arrays, one in which the
rational values are stored, but without repetition, and another, to help identify the matrix elements
that map to each rational value. The idea is to capitalise on an expected repetition of many rational
values in the matrix. It is given a limited experimental evaluation. The approach does not address
what we consider the main obstacle to better performance, namely the commitment to a dense
representation. As with other previous work, Jourdan’s excepted, it ignores the inherent sparsity of
the problem (or the “phantom density” that manifests itself).

9.5 Exploiting Parallelism
For their implementation of the Octagons domain, Banterle and Giacobazzi [6] pioneered the use
of graphics hardware in the service of program analysis. The matrix representation of Octagons
constraints was treated as a 2D texture and the Octagons abstract operations were implemented as
graphics operations, utilising data parallelism where possible.

Parallelization is also an aim of the “OptOctagon” approach of Singh et al. [58]. OptOctagon was
a novel approach to Octagons analysis which has subsequently become part of the ELINA library.
Several of the ideas mentioned above are utilized in OptOctagons. For example, the implementation
makes use of dynamic variable packing (see also [59]). It uses, as a starting point, an Apron-
like “half-matrix” representation of DBMs. But a central feature in OptOctagons is the ability
to switch, dynamically, from one kind of DBM representation to another (chosen among “top”,
“dense”, “sparse”, and “decomposed”). The hypothesis is that a different representation may be

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

1:48 Gange et al.

suited for different stages of an analysis. Hence a measure of sparsity is continually calculated,
and this measure dictates when a switch is to be made to a different, more suitable, representation.
The abstract operations can then be specialised for the different representations, leading to very
different behaviours and performance, in particular compared to (the usually expensive) closure.
Importantly (and the reason why we discuss the work in this sub-section on parallelism), for the
dense representation, techniques borrowed from high-performance linear algebra can be utilized,
including vectorization [31].

Singh et al. [58] evaluate OptOctagons experimentally, by comparing against Apron across some
40 sizeable benchmark programs. Very large speedups are evident. However, the data provided
also demonstrate very clearly that phantom density is a real issue. A graph ([58], Figure 7) shows
the running time of the successive closure operations for one random benchmark. As the authors
comment, “the DBMs are dense in the beginning but become sparse due to widening midway
through the analysis.” But, as we have argued in this paper, the phenomenon of dense DBMs early
on is both unwanted and unnecessary.

In contrast, we see Zones/Octagons types of program analysis as essentially-sparse graph prob-
lems. In Section 5 we have argued that the density observed by Singh et al. [58]) is artificial—it
stems from a failure to separate independent properties from truly relational properties. Our ap-
proach is therefore almost diametrically opposite that of Singh et al. [58] as we choose to exploit
the innate sparsity as best we can. For that reason, we have found a comparison between the
two implementations a very worthwhile exercise. Many of the ideas from each would seem to be
orthogonal. We hope the present paper will encourage further development, possibly by combining
the insights from both approaches.

10 CONCLUSION AND FUTUREWORK
In this paper, we have addressed the problem of scalable implementation of weakly relational
abstract domains. We have described the reductions to graph shortest-path problems that underlie
the classical work on the Zones and Octagons abstract domains. Traditional implementations have
suffered from scalability problems, partly due to how constraint graphs have been represented. We
have argued that much of the graph density that quickly creeps in during analysis is primarily an
artefact of a poor choice of representation.
An alternative Split Normal Form permits separate handling of non-relational and relational

properties, both in Zones [28] and Octagons [39]. In principle, this should allow for much improved
implementations of both Zones and Octagons. This paper contains complete sets of algorithms,
utilising split normal form, for all relevant abstract operations in each of the two abstract domains.
Implementations are available as open source [21].

To explore whether the in-principle advantages of Split Normal Form translate to better perfor-
mance in practice, we have conducted extensive experiments based on programs from eBPF and
SV-COMP 2019. These programs have assertions, which allows us to evaluate not only efficiency, but
also the levels of precision obtained, and in particular, the impact of widening. Regarding efficiency,
we have evaluated the implementations against the state-of-the-art analyzer ELINA [58, 59] which
also implements both the Zones and the Octagons domains. We have been able to compare like
with like, since ELINA’s approach has been implemented as part of the Crab analyzer.

The evaluation shows that it really is important to use a representation that prevents bounds
information from inadvertently polluting relational information. The idea behind Split Normal
Form is to keep bounds information at arm’s length from relational information. In the traditional
implementations, the phenomenon we have referred to as “phantom density” clearly manifests
itself in the analysis of real-world programs.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

A Fresh Look at Zones and Octagons 1:49

Evaluation also shows that much of the benefit of variable packing is the removal of phantom
density from the DBM representation, and therefore, Split Normal Form does not significantly
benefit from it. Variable packing comes with a potential loss of precision in case the grouping of
variables is sub-optimal. Thismakes Split Normal Form domains good alternatives to the conjunction
of Zones/Octagons and variable packing. The performance characteristics of the SNF domains
match those of variable packing, yet come with better performance guarantees.

On the other hand, the abstract operations presented in this paper are rather more intricate than
the classical operations defined using dense representations. It is also worth pointing out that the
use of variable packing, as a general conjunct to abstract domains, is a more flexible approach,
being applicable also to polyhedral analysis, for example. This is important to stress, since in many
cases it is the limited expressiveness of Zones and Octagons that prevents successful use, including
in program verification.
As to the question of how different widening algorithms affect precision in practice, Table 5

suggests that Split Normal Form and ELINA widening are incomparable. For Octagons, the differ-
ences on SV-COMP 2019 benchmarks are negligible, as each leads to the same number of assertions
proved. However, for Zones, SNF appears to achieve higher precision.

While the approach of Singh et al. [58] is based on the same goals and observations as the present
work, the two approaches are almost diametrically opposed. ELINA remains committed to a dense
matrix representation, even if it is not used exclusively. The application of sophisticated techniques
such as vectorization and the use of variable packing (“decomposition”) does not appear to be
sufficient to make up for the disadvantages brought by a dense representation. We instead tackle the
problem by taking the greatest possible advantage of the natural sparsity of the constraints involved,
leading to entirely different data structures and algorithms. Techniques such as vectorization can
improve running times by a constant factor. But for graph manipulation, data structures and
algorithms that can capitalise on inherent sparsity have a greater potential to deliver efficiency at a
scale beyond constant factors.

Of course the two approaches are not mutually exclusive. Perhaps the main conclusion from our
work is that there still appears to be scope for better engineered Zones and Octagons analysis.

ACKNOWLEDGMENTS
We wish to thank the three anonymous reviewers for their meticulous work. Their many insightful
suggestions improved the paper considerably. Graeme Gange has been supported by the Australian
Research Council under Discovery Early Career Researcher Award DE160100568. Jorge Navas has
been supported by the US National Science Foundation under grant number 1816936.

REFERENCES
[1] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a directed graph. SIAM Journal of Computing, 1

(2):131–137, 1972.
[2] R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD thesis, Università di Pisa, 1997.
[3] R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-relational numeric abstractions. In

C. Hankin and I. Siveroni, editors, Static Analysis: Proceedings of the 12th International Symposium, volume 3672 of
Lecture Notes in Computer Science, pages 3–18. Springer, 2005.

[4] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete set of numerical abstractions
for the analysis and verification of hardware and software systems. Science of Computer Programming, 72(1-2):3–21,
2008.

[5] R. Bagnara, P. M. Hill, and E. Zaffanella. Weakly-relational shapes for numeric abstractions: Improved algorithms and
proofs of correctness. Formal Methods in System Design, 35(3):279–323, 2009.

[6] F. Banterle and R. Giacobazzi. A fast implementation of the Octagon abstract domain on graphics hardware. In H. Riis
Nielson and G. Filé, editors, Static Analysis, volume 4634 of Lecture Notes in Computer Science, pages 315–332. Springer,
2007.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

1:50 Gange et al.

[7] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90, 1958.
[8] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static analyzer for

large safety-critical software. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’03), pages 196–207. ACM Press, 2003.

[9] P. Briggs and L. Torczon. An efficient representation for sparse sets. ACM Letters on Programming Languages and
Systems, 2(1-4):59–69, 1993.

[10] A. Chawdhary and A. King. Compact difference bound matrices. In B.-Y. E. Chang, editor, Programming Languages
and Systems (APLAS’17), volume 10695 of Lecture Notes in Computer Science, pages 471–490. Springer, 2017.

[11] A. Chawdhary, E. Robbins, and A. King. Incrementally closing Octagons, 2016. Version 1, https://arXiv.org/format/
1610.02952.

[12] B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. Mathematical Programming, 85(2):277–311,
1999.

[13] Clam team. Clam: Crab for Llvm Abstraction Manager. Available at https://github.com/seahorn/crab-llvm.
[14] R. Clarisó and J. Cortadella. The Octahedron abstract domain. In R. Giacobazzi, editor, Static Analysis, volume 3148 of

Lecture Notes in Computer Science, pages 312–327. Springer, 2004.
[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2009.
[16] S. Cotton and O. Maler. Fast and flexible difference constraint propagation for DPLL(T). In A. Biere and C. P. Gomes,

editors, Theory and Applications of Satisfiability Testing (SAT 2006), volume 4121 of Lecture Notes in Computer Science,
pages 170–183. Springer, 2006.

[17] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proceedings of the Fourth ACM Symposium on Principles of Programming Languages,
pages 238–252. ACM Press, 1977.

[18] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proceedings of the Sixth ACM
Symposium on Principles of Programming Languages, pages 269–282. ACM Press, 1979.

[19] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In Proceedings of
the Fifth ACM Symposium on Principles of Programming Languages, pages 84–97. ACM Press, 1978.

[20] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Why does Astrée scale up? Formal Methods in
System Design, 35(3):229–264, 2009.

[21] Crab. CoRnucopia of ABstractions: A language-agnostic library for abstract interpretation. Available at https:
//github.com/seahorn/crab.

[22] EBPF. A set of EBPF programs. Available at https://github.com/vbpf/ebpf-samples.
[23] ELINA team. ELINA: ETH LIbrary for Numerical Analysis. Available at https://github.com/eth-srl/ELINA.
[24] T. Feydy, A. Schutt, and P. J. Stuckey. Global difference constraint propagation for finite domain solvers. In Proceedings

of the 10th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, pages 226–235.
ACM Press, 2008.

[25] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5:345, 1962.
[26] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.
[27] G. Gange, J. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Interval analysis and machine arithmetic: Why

signedness ignorance is bliss. ACM Transactions on Programming Languages and Systems, 37(1):1:1–1:35, 2015.
[28] G. Gange, J. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Exploiting sparsity in difference-bound matrices.

In X. Rival, editor, Static Analysis: Proceedings of the 23rd International Symposium, volume 9837 of Lecture Notes in
Computer Science, pages 189–211. Springer, 2016.

[29] G. Gange, J. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Dissecting widening: Separating termination from
information. In A. W. Lin, editor, Proceedings of the 17th Asian Symposium on Programming Languages and Systems,
volume 11893 of Lecture Notes in Computer Science, pages 95–114. Springer, 2019.

[30] E. Gershuni, N. Amit, A. Gurfinkel, N. Narodytska, J. A. Navas, N. Rinetzky, L. Ryzhyk, and M. Sagiv. Simple and
precise static analysis of untrusted Linux kernel extensions. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 1069–1084, 2019.

[31] S.-C. Han, F. Franchetti, and M. Püschel. Program generation for the all-pairs shortest path problem. In Proceedings of
the 2006 International Conference on Parallel Architectures and Compilation Techniques, pages 222–232. IEEE Comp.
Soc., 2006.

[32] W. Harvey and P. J. Stuckey. A unit two variable per inequality integer constraint solver for constraint logic program-
ming. In Proceedings of the Australasian Computer Science Conference, pages 102–111, 1997.

[33] J. He, G. Singh, M. Püschel, and M. Vechev. Learning fast and precise numerical analysis. In Proceedings of the 41st
ACM Symposium on Programming Language Design and Implementation, pages 1112–1127. ACM Press, 2020.

[34] K. Heo, H. Oh, and H. Yang. Learning a variable-clustering strategy for Octagon from labeled data generated by a
static analysis. In X. Rival, editor, Static Analysis, volume 9837 of Lecture Notes in Computer Science, pages 237–256.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://arXiv.org/format/1610.02952
https://arXiv.org/format/1610.02952
https://github.com/seahorn/crab-llvm
https://github.com/seahorn/crab
https://github.com/seahorn/crab
https://github.com/vbpf/ebpf-samples
https://github.com/eth-srl/ELINA

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

A Fresh Look at Zones and Octagons 1:51

Springer, 2016.
[35] J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Beyond finite domains. In Proceedings of the International Workshop

on Principles and Practices of Constraint Programming, volume 874 of Lecture Notes in Computer Science, pages 86–93.
Springer, 1994.

[36] B. Jeannet and A. Miné. A library of numerical abstract domains for static analysis. In A. Bouajjani and O. Maler,
editors, Computer Aided Verification, volume 5643 of Lecture Notes in Computer Science, pages 661–667. Springer, 2009.

[37] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM, 24(1):1–13, 1977.
[38] J.-H. Jourdan. Verasco: A Formally Verified C Static Analyzer. PhD thesis, Université Paris Diderot, 2016.
[39] J.-H. Jourdan. Sparsity preserving algorithms for Octagons. Electronic Notes in Theoretical Computer Science, 331:57–70,

2017.
[40] J. Kuderski, J. A. Navas, and A. Gurfinkel. Unification-based pointer analysis without oversharing. In Proceedings of

the 19th Conference on Formal Methods in Computer-Aided Design (FMCAD 2019), pages 37–45. FMCAD, Inc., 2019.
[41] S. K. Lahiri and M. Musuvathi. An efficient decision procedure for UTVPI constraints. In B. Gramlich, editor, Frontiers

of Combining Systems, pages 168–183. Springer, 2005.
[42] K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-time systems: Compact data structure

and state-space reduction. In Proceedings of the 18th International Symposium on Real-Time Systems, pages 14–24. IEEE
Comp. Soc., 1997.

[43] F. Logozzo and M. Fähndrich. Pentagons: A weakly relational abstract domain for the efficient validation of array
accesses. In Proceedings of the 2008 ACM Symposium on Applied Computing, pages 184–188. ACM Press, 2008.

[44] A. Miné. Représentation d’ensembles de contraintes de somme ou de différence de deux variables et application à
l’analyse automatiques de programmes. Master’s thesis, École Normale Supérieure, Paris, 2000.

[45] A. Miné. A new numerical abstract domain based on difference-bound matrices. In O. Danvy and A. Filinski, editors,
Programs as Data Objects, volume 2053 of Lecture Notes in Computer Science, pages 155–172. Springer, 2001.

[46] A. Miné. The Octagon abstract domain. In E. Burd, P. Aiken, and R. Koschke, editors, Proceedings of the Eighth Working
Conference on Reverse Engineering, pages 310–319. IEEE Comp. Soc., 2001.

[47] A. Miné. A few graph-based relational numerical abstract domains. In M. Hermenegildo and G. Puebla, editors, Static
Analysis, volume 2477 of Lecture Notes in Computer Science, pages 117–132. Springer, 2002.

[48] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École Polytechnique, Paris, 2004.
[49] A. Miné. The Octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–100, 2006.
[50] A. Miné. Symbolic methods to enhance the precision of numerical abstract domains. In E. A. Emerson and K. S.

Namjoshi, editors, Verification, Model Checking, and Abstract Interpretation, volume 3855 of Lecture Notes in Computer
Science, pages 348–363. Springer, 2006.

[51] G. Nemhauser. A generalized permanent label setting algorithm for the shortest path between specified nodes. Journal
of Mathematical Analysis and Applications, 38(2):328–334, 1972.

[52] Prevail team. PREVAIL: A Polynomial-Runtime EBPF Verifier using an Abstract Interpretation Layer. Available at
https://github.com/vbpf/ebpf-verifier.

[53] S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint-based linear relations analysis. In R. Giacobazzi, editor,
Static Analysis, volume 3148 of Lecture Notes in Computer Science, pages 53–68. Springer, 2004.

[54] A. Schutt and P. J. Stuckey. Incremental satisfiability and implication for UTVPI constraints. INFORMS Journal of
Computing, 22(4):514–527, 2010.

[55] R. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM, 28(4):769–779, 1981.
[56] A. Simon and A. King. Exploiting sparsity in polyhedral analysis. In C. Hankin, editor, Static Analysis, volume 3672 of

Lecture Notes in Computer Science, pages 336–351. Springer, 2005.
[57] A. Simon, A. King, and J. M. Howe. Two variables per linear inequality as an abstract domain. In M. Leuschel, editor,

Logic Based Program Synthesis and Transformation: Proceedings of the 12th International Workshop, volume 2664 of
Lecture Notes in Computer Science, pages 71–89. Springer, 2003.

[58] G. Singh, M. Püschel, and M. Vechev. Making numerical program analysis fast. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 303–313. ACM Press, 2015.

[59] G. Singh, M. Püschel, and M. T. Vechev. A practical construction for decomposing numerical abstract domains.
Proceedings of the ACM on Programming Languages, 2(POPL):55:1–55:28, 2018.

[60] SVCOMP. Competition on software verification (SV-COMP), 2019. http://sv-comp.sosy-lab.org/2019/. Benchmarks
available at https://github.com/sosy-lab/sv-benchmarks/c.

[61] A. Venet and G. Brat. Precise and efficient static array bound checking for large embedded C programs. In Proceedings
of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation, pages 231–242. ACM
Press, 2004.

[62] A. J. Venet. The Gauge domain: Scalable analysis of linear inequality invariants. In P. Madushan and S. A. Seshia,
editors, Computer Aided Verification, volume 7358 of Lecture Notes in Computer Science, pages 139–154. Springer, 2012.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://github.com/vbpf/ebpf-verifier
http://sv-comp.sosy-lab.org/2019/
https://github.com/sosy-lab/sv-benchmarks/c

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Digraph Operations
	2.2 Difference Constraints and Weighted Digraphs
	2.3 Solving Difference Constraints
	2.4 Graph Representations

	3 Zones
	3.1 Ordering
	3.2 Variable Elimination
	3.3 Constraint Addition
	3.4 Assignment
	3.5 Meet
	3.6 Join
	3.7 Widening

	4 Sparse Graph Representations
	5 SNF Zones: Improved Performance through Split Normal Form
	5.1 Ordering
	5.2 Variable Elimination
	5.3 Constraint Addition, Assignment, and Meet
	5.4 Join
	5.5 Widening

	6 From Zones to Octagons
	6.1 Octagons
	6.2 Closures

	7 SNF Octagons
	7.1 Weak Closure
	7.2 Ordering
	7.3 Variable Elimination
	7.4 Constraint Addition
	7.5 Assignment
	7.6 Meet
	7.7 Join
	7.8 Widening
	7.9 Handling Integer Constraints

	8 Experiments and Results
	8.1 Research Questions
	8.2 Implementation
	8.3 Experiment Design
	8.4 Results
	8.5 RQ3: How does Variable Packing interact with Split Normal Form?

	9 Related Work
	9.1 Similar Abstract Domains
	9.2 Variable Packing
	9.3 Algorithmic Improvements
	9.4 Phantom Density and Data Structure Improvements
	9.5 Exploiting Parallelism

	10 Conclusion and Future Work
	Acknowledgments
	References

