
Artifact

VMCAI’25

Evaluated

Av
ailable

Fun

ct
io
na
l

Automatic Inference of Relational Object
Invariants

Yusen Su1[0009−0004−8813−0797], Jorge A. Navas2[0000−0002−0516−1167], Arie
Gurfinkel1[0000−0002−5964−6792], and Isabel
Garcia-Contreras1,3[0000−0001−6098−3895]

1 Department of Electrical and Computer Engineering, University of Waterloo
{y256su,arie.gurfinkel,igarciac}@uwaterloo.ca

2 Certora Inc.
navasjorgea@gmail.com

3 Black Duck Software, Inc.

Abstract. Relational object invariants (or representation invariants)
are relational properties held by the fields of a (memory) object through-
out its lifetime. For example, the length of a buffer never exceeds its ca-
pacity. Automatic inference of these invariants is particularly challenging
because they are often broken temporarily during field updates.
In this paper, we present an Abstract Interpretation-based solution to
infer object invariants. Our key insight is a new object abstraction for
memory objects, where memory is divided into multiple memory banks,
each containing several objects. Within each bank, objects are abstracted
by separating the most recently used (MRU) object, represented precisely
with strong updates, while the rest are summarized. For an effective
implementation of this approach, we introduce a new composite abstract
domain, which forms a reduced product of numerical and equality sub-
domains. This design efficiently expresses relationships between a small
number of variables (e.g., fields of the same abstract object).
We implement the new domain in the Crab abstract interpreter and
evaluate it on several benchmarks for memory safety. We show that our
approach is significantly more scalable for relational properties than the
existing implementation of Crab. To evaluate precision, we have inte-
grated our analysis as a pre-processing step to SeaBMC bounded model
checker, and show that it is effective at both discharging assertions during
pre-processing, and significantly improving the run-time of SeaBMC.

Keywords: Static Analysis · Abstract Interpretation · Object Invari-
ants · Abstract Domains.

1 Introduction

Program invariants are crucial to capture properties that persist during runtime.
Verifying programs with classes or data structures requires determining repre-
sentation invariants [19] that express consistency properties (e.g., the length of a

https://doi.org/10.5281/zenodo.13849174

2 Y. Su et al.

1 #define N 100
2 struct byte_buf {
3 int len;
4 int cap;
5 char *buf;
6 };
7 int main() {
8 struct byte_buf *ary[N];
9 for (int i = 0; i < N; ++i) {

10 struct byte_buf *p =
malloc(sizeof(struct byte_buf));

11 int sz = i + 1;
12 p->len = i; p->cap = sz;
13 p->buf = malloc(sz);
14 ary[i] = p;
15 }
16 char *new_buf = malloc(20);
17 ary[0]->len = 15;
18 ary[0]->cap = 20;
19 ary[0]->buf = new_buf;
20 assert(ary[0]->len <= ary[0]->cap);
21 ary[0]->buf[ary[0]->len] = '\0';
22 }

Fig. 1: A simple C program.

Byte Buffer Bank:

Summary
length <= capacity p

Cache
length <= capacity

pack

Byte Buffer Bank:

Summary
length <= capacity

Cache
length <= capacity

unpack ary[0]

Byte Buffer Bank:

Summary
length <= capacity

Cache
 length = 15

ary[0]

update

(a)

(b)

(c)

Fig. 2: Abstract memory state on
line 17 of Fig. 1.

vector never exceeds its capacity) of those data types. For memory objects, rep-
resentation invariants as object invariants describe relational properties among
object fields that hold across all program states where these objects are alive.
These invariants are essential for proving memory safety and functional correct-
ness of a program. However, the invariants become imprecise when the static
analyzer is uncertain about which memory objects are affected by field updates,
typically represented as weak updates.

Consider a C program in Fig. 1 that uses a byte_buf to represent a resiz-
able byte buffer with length and capacity. The program keeps an array ary of
byte buffers. Each initialized element of ary satisfies an invariant: len <= cap.
Discovering this invariant is crucial for establishing memory safety (e.g., proving
safe access on line 21), yet, notoriously hard for abstract interpreters. Note that
recency [1] does not help here because all memory stores after the for loop are
modeled as weak updates. For instance, Mopsa [22] with recency does not prove
the assertion on line 20, since the inferred invariant is len > 0 ∧ cap > 1.

In this paper, we present a new technique for inferring object invariants.
We capture field updates strongly in a separate temporary object abstraction
and join it with previously established invariants only when necessary. While
preserving soundness, our approach produces more precise analysis results by not
weakening inferred invariants with intermediate object states between updates.

First, we introduce a new concrete memory model that organizes memory
as a collection of memory banks, each containing certain memory objects. The
partitioning is achieved by a parameterized function that assigns each memory
object in the program a corresponding bank. Each bank has two components:
storage, holding objects, and cache, storing the object being read from or written
to. For example, all byte buffers in Fig. 1 are placed into the storage of the same

Automatic Inference of Relational Object Invariants 3

bank. The field updates on line 12 require loading the byte buffer referred by
pointer p into the cache before updates. The cache singles out the object being
modified. For brevity, we specify this usage pattern with a size of one as most
recently used (MRU) and denote the object in the cache as the MRU object.

Second, we follow a standard summarization-based abstraction with a single
summary object with its invariants representing properties common to all the
objects stored in each bank. Similar to the concrete model, all memory updates
are handled through the MRU object. This avoids temporarily breaking the
invariants of the (abstract) summary object, as changes to the MRU object do
not impact the summarized invariants until it is merged back. Fig. 2 presents
the changes in the abstract memory state at line 17. The memory bank for byte
buffers includes one MRU object and one summary object. Before evaluating
line 17, as shown in Fig. 2(a), p refers to the MRU object, since the last two
field updates (line 12) happened on this object. Following the initialization loop,
len <= cap is kept for both MRU and summary objects.

The cache may miss if the cached object is no longer the MRU. For exam-
ple, the field update, ary[0]->len = 15, on line 17 requires access to the byte
buffer referenced by ary[0], while the cache still holds the object referred by p.
In this case, the cached object is packed back to the summary (see Fig. 2(a))
and the new MRU object is unpacked from the summary (Fig. 2(b)). We track
pointer alias information to decide when to pack and unpack. Before each mem-
ory access, if the dereferenced pointer does not alias with the pointer accessed to
the MRU object, packing and unpacking occur. In this example, after the loop
computation, p does not alias ary[0].

After the cache is replaced, the field update, ary[0]->len = 15, breaks the
invariant len <= cap, but our solution (Fig. 2(c)) ensures that we update the
content of the MRU object properly without affecting the invariants in the sum-
mary object. Then, the invariant is restored at line 18, thus proving the assertion
on line 20 and memory safety on line 21 through our invariants in the cache.

Third, we introduce a new abstract domain, called MRUD, that infers auto-
matically object invariants based on our new memory model. This domain re-
quires combining heap (memory abstraction), must alias (flow-sensitive points-
to information) and value (numerical relational invariants) analyses. Using a
monolithic numerical domain is highly inefficient because of the large number
of dimensions required to model all program variables and their ghost versions
that keep track of base addresses, offsets, etc. However, a key insight is that
each transfer function typically affects a small subset of variables (e.g., read-
ing a field only updates the corresponding integer/pointer value). Based on this
observation, MRUD is designed as a composite abstract domain where each
memory bank is modeled separately and the propagation of facts between them
is carefully limited to a small set of shared variables. This modular design is
what makes MRUD both scalable for large code bases and capable of preserving
precise object invariants.

We implemented MRUD in the Crab analyzer [13] and evaluated both its
scalability and precision. For scalability, we compare it to the summarization-

4 Y. Su et al.

based abstract domain implemented in Crab. Our approach shows improved
scalability, with 75X faster performance than the state-of-the-art. For precision,
we compare it to the recency domain implemented on Mopsa using a small set
of benchmarks. The results show that our approach successfully proves all asser-
tions in the programs and achieves better precision by preserving object invari-
ants. Additionally, we use MRUD in a case study with the bounded model checker
SeaBMC, where it effectively proves and discharges memory safety checks to
reduce the verification cost of SeaBMC.

In summary, the contributions of this paper are: (1) We introduce a new
memory model designed for object abstraction as an alternative to the C mem-
ory model, and describe the concrete semantics of an intermediate representation
based on the new model (Section 3); (2) We describe the MRUD and correspond-
ing abstract transfer functions, and introduce a domain reduction for invariant
refinement (Section 4); (3) We detail our implementation (Section 5) and eval-
uate it in the Crab analyzer (Section 6).

2 Preliminaries

Without loss of generality, we assume that the input program is in CrabIR [13]
intermediate representation. The syntax of CrabIR is shown in Fig. 3. We assume
that each memory object is a collection of integer and pointer fields. A pointer is
a pair of a base address and an offset, where an offset is given by a number num
and an optional field name fld. All named fields have fixed offsets. That is, field
names are redundant – they are use to simplify the abstraction function in the
abstract semantics. In our implementation, the field names are automatically
discovered by a whole-program pointer analysis during compilation from the
source language to CrabIR.

We write V for the set of all program variables. The set V is partitioned into:
integers Vint , pointers Vptr , and fields Vfld . The union of Vint and Vptr is called
scalars. The statements in CrabIR consist of gotos, assumptions, assertions, and
arithmetic and memory operations. All statements are strongly typed. Allocation
of memory objects is performed by alloc (allocate). Pointer arithmetic is handled
by the gep instruction that computes a destination address using the base pointer
and an integer offset. Memory reads and writes are done by load and store,
respectively. As usual, a program P is a control flow graph (CFG) whose basic
blocks are annotated with statements from Fig. 3. CrabIR also supports C-
like memory objects and it does not require them to be partitioned into fields.
These are handled as in prior work [13]. We omit such objects in the theoretical
exposition in the paper, but handle them as in [13] in our implementation.

We assume the reader is familiar with a standard numerical abstract domain
that provides the following operations: join (⊔), meet (⊓), widen (▽), projection
(project(d,V)) that projects an abstract value d to the variable set V, forget
(forget(d, v)) that removes a variable v from an abstract value d, and constrain
(addCons(d, c)) that restricts an abstract value d by a linear constraint c.

Automatic Inference of Relational Object Invariants 5

P ::= F+ Sptr ::= ptr := alloc(fld, num) |

F ::= declare fun(v∗){ BB+ } ptr2, fld2 := gep(ptr1, fld1, num) |

BB ::= l : S∗ goto l+ | scl := load(ptr, fld) | store(ptr, fld, scl)
l : S∗ return v∗ Eint ::= Const | num | Eint opint Eint

S ::= assert(Econd) | assume(Econd) | Econd ::= Eint opcmp Eint

num := Eint | Sptr

Fig. 3: The syntax of CrabIR.

i:=0;

loop entry

assume(i <= 99);

1 p := alloc(@len, 12);
2 sz := i + 1;
3 (@len, plen) := gep(@len, p);
4 store(@len, plen, i);
5 (@cap, pcap) := gep(@len, p + 4);
6 store(@cap, pcap, sz);
7 buf := alloc(@char, sz);
8 (@buf, pbuf) := gep(@len, p + 8);
9 store(@buf, pbuf, buf);

10 ...
11 i := i + 1;

assume(i > 99);

(a)

line 4

sz 7→ 2, i 7→ 1,
p 7→ 200016, . . .

scalar

mb

cache

storage

flag

used dirty

true true

len cap buf

100016 0 1 10016

100016 NA NA NA

NA NA NA200016

(1)

flush

line 5

sz 7→ 2, i 7→ 1,
p 7→ 200016, . . .

scalar

mb

cache

storage

flag

used dirty

false false

len cap buf

100016 0 1 10016

100016 0 1 10016

NA NA NA200016

flush

(2)

update

line 5

sz 7→ 2, i 7→ 1,
p 7→ 200016, . . .

scalar

mb

cache

storage

flag

used dirty

true false

len cap buf

200016 NA NA NA

100016 0 1 10016

NA NA NA200016

update

(3)

store

line 5

sz 7→ 2, i 7→ 1,
p 7→ 200016, . . .

scalar

mb

cache

storage

flag

used dirty

true true

len cap buf

200016 1 NA NA

100016 0 1 10016

NA NA NA200016

(4)

step

(b)

Fig. 4: (a) A program, and (b) an execution of line 4 under RUMM.

We use an equality domain over variable sets V to express equivalence re-
lations such as x ≈ y. The equality domain can be implemented using weakly
relational numerical domains (e.g., [17,20,21]). We assume the equality domain
has the following special operations: addEqual for adding an equality, equals for
testing whether an abstract value entails an equality, and toCons for computing
closed form of all implied equalities.

3 Recent-Use Memory Model

A memory model defines how memory is structured and accessed in the
operational semantics (i.e., execution) of the program. The standard C memory
model (CMM) treats each allocation as a blob of bytes. Specifically, each memory

6 Y. Su et al.

object is a blob of bytes (logically sub-divided into fields). A pointer is a pair
(b, o) of an object identifier b (a.k.a., the base address) and a numeric offset
o within that object. At allocation, an object occupies a blob in memory at
an address determined by the memory allocator. Each memory operation is
performed through a pointer to access the object’s content. In practice, CMM is
typically implemented by a flat memory model of the underlying architecture.
However, non-flat memory models with multiple address spaces are common,
especially in embedded systems [14].

In this paper, we introduce a new memory model, called recent-use memory
model (RUMM), that differentiates between the most recently used (MRU) ob-
ject and other memory objects. RUMM partitions memory into multiple banks,
each with (a) a storage – a blob of bytes that permanently stores memory ob-
jects, and (b) a cache – a blob of bytes that temporarily holds the MRU object of
that bank. The notion of objects and pointers in RUMM is exactly as in CMM.
Furthermore, RUMM is parameterized by a function findmb that maps allocation
sites to specific memory banks of RUMM. This is similar to a pool allocation,
where objects are allocated in different pools [18]. Each object is allocated as a
blob in the selected bank’s storage, with each bank managing its allocations.

What makes RUMM special is its handling of read and write operations. To
access an object x from a given bank, x is first loaded into the cache and then
accessed from there. If a different object y currently occupies the cache, y is
flushed back to its place in its memory bank before x is loaded. Thus, multiple
read and write operations that work on the same object only use the cache, until
the cache is flushed when a new object, from the same bank, is accessed.

Fig. 4a shows a CrabIR for the for loop in Fig. 1. Variables prefixed with @ are
the fields of byte_buf. The loop starts at the entry block and checks whether the
counter i meets the enter/exit condition. In CrabIR, assume is used to enforce
this condition. The loop initializes a memory object, increments the counter,
and loops back to the loop entry. Fig. 4b illustrates the execution of line 4
during the second iteration of the loop. Fig. 4b(1) shows the state at line 4,
where scalar variables map to their values as scalar and a memory bank mb is
provided to store memory objects allocated at line 1. We assume the first two
iterations allocate objects at addresses 100016 and 200016, respectively. The fields
of each object are visually represented as slots, with either concrete values or
marked as not available (NA) if uninitialized. The storage keeps two uninitialized
objects, while the cache holds the MRU object. The object at address 100016 is
the MRU since its last access is at line 9 during the first iteration. The cache
status is indicated by two flags: used, indicating the cache is active, and dirty,
meaning the cache value has been updated. When store at line 4 accesses the
object with address 200016, the cache flushes the object (100016) back to the
storage (Fig. 4b(2)) and updates with the uninitialized object from the storage
(Fig. 4b(3)). The cache is then ready to write @len with a value of 1 (Fig. 4b(4)).

We argue that RUMM is compatible with CMM. This follows from: (1)
RUMM organizes memory objects into separate, non-overlapping memory banks;
(2) The usage of cache is an extra step that does not invalidate the properties of

Automatic Inference of Relational Object Invariants 7

Jptr := alloc(fld, num)KRUMM(σ) ≡
let ⟨scalar ,mem⟩= σ in
let mb = findmb(fld,mem) in
let ⟨cache, storage,flag⟩=mb in
let ⟨_, sz ⟩= scalar [num] in
let ⟨ptrbase , storage ′⟩=

allocatormb(storage, sz) in
let scalar ′=

scalar [ptr 7→ ⟨ptrbase , 0⟩] in
let mb′ = ⟨cache, storage ′,flag⟩ in
⟨scalar ′,mem \ {mb} ∪ {mb′}⟩

Jscl := load(ptr, fld)KRUMM(σ) ≡
let ⟨scalar ,mem⟩= σ in
let mb = findmb(fld,mem) in
let ⟨ptrbase ,_⟩= scalar [ptr] in
let mb′=cacheSync(mb, ptrbase) in
let ⟨cache,_,_⟩=mb′ in
let ⟨_,fields⟩= cache in
let scalar ′=

scalar [scl 7→ fields[fld]] in
⟨scalar ′,mem \ {mb} ∪ {mb′}⟩

Jptr2, fld2 := gep(ptr1, fld1, num)KRUMM(σ) ≡
let ⟨scalar ,mem⟩= σ in
let ⟨ptr1base , offset⟩= scalar [ptr] in
let ⟨_, val⟩= scalar [num] in
let offset ′ = offset + val in
let scalar ′=
scalar [ptr2 7→ ⟨ptr1base , offset ′⟩] in

⟨scalar ′,mem⟩

Jstore(ptr, fld, scl)KRUMM(σ) ≡
let ⟨scalar ,mem⟩= σ in
let mb = findmb(fld,mem) in
let ⟨ptrbase ,_⟩= scalar [ptr] in
let mb′ = cacheSync(mb, ptrbase) in
let ⟨cache, storage,_⟩=mb′ in
let ⟨cachebase ,fields⟩= cache in
let cache ′ = ⟨cachebase ,

fields[fld 7→ scalar [scl]]⟩ in
let mb′′=

⟨cache ′, storage, ⟨true, true⟩⟩ in
⟨scalar ,mem \ {mb} ∪ {mb

′′
}⟩

Fig. 5: CrabIR statements operating under RUMM.

each object. The semantics of CrabIR are the same under both memory models.
In the following, we formalize the concrete semantics of CrabIR under RUMM.

A CrabIR program has scalars (i.e., integers Vint and pointers Vptr) whose
values are represented as cells. A cell, cell ∈ Cell : N × Z, represents either
a pointer’s base address and offset, denoted as ⟨baddr , offset⟩, or an integer
value: ⟨0, val⟩. Formally, a scalar state is scalar ∈ Scalar : Vscl 7→ Cell. To avoid
redundancy, we explicitly associate the base address of a ptr with a ghost variable
ptrbase ∈ Vbase

ptr . For example, if a pointer p is ⟨10016, 8⟩, then pbase is 10016.

The memory is modeled as a set of memory banks, mem ∈ Memory : {mb |mb
∈ MB}. Each bank, mb ∈ MB : Cache× Storage× Flag, holds memory values for
cache, storage, and boolean flags. The cache, cache ∈ Cache : N×FldVal, includes
the cached object’s base address (as cachebase) and field values. The field values
(as cells) are kept in an environment fields ∈ FldVal : Vfld 7→ Cell. The storage,
storage ∈ Storage : N 7→ FldVal, maps base addresses of memory objects to
the corresponding field environment. The cache boolean flags, flag , indicate if
it is occupied (used) and overwritten (dirty). Overall, a concrete program state
σ ∈ State is a tuple: ⟨scalar ,mem⟩. We assume findmb maps a field variable and
memory state to a memory bank, indicating in which bank the field is stored.

Figs. 5 and 6 describe the changes to a program state at each memory and
pointer arithmetic statements in CrabIR. The function J·KRUMM(·) takes a state-
ment and a program state and returns the computed state under RUMM. The

8 Y. Su et al.

cacheSync(mb, ptrbase) ≡
let ⟨cache, storage, ⟨used , dirty⟩⟩=mb in
let ⟨cachebase , _⟩= cache in
let mb′ =

if ¬used ∧ ptrbase ̸= cachebase then
let storage ′ = if dirty then
flush(cache, storage) else storage in

let cache ′ = refresh(storage ′, ptrbase) in
let mb′=
⟨cache ′, storage ′, ⟨true, false⟩⟩ in

mb′

else mb
in mb′

flush(cache, storage) ≡
let ⟨cachebase ,fields⟩=

cache in
storage[cachebase 7→ fields]

refresh(storage, ptrbase) ≡
⟨ptrbase , storage[ptrbase]⟩

Fig. 6: Cache operations.

initial state’s scalar is an empty map. Each bank mb contains an empty cache,
an empty map storage, and a ⟨false, false⟩ cache flags.

The alloc statement creates a new memory object of size num, assigns it to
a specific bank’s storage. The bank is determined by fld through findmb, and its
allocator constructs the object and returns its base address assigned to ptr.

The gep computes a new pointer value for ptr2 by adding an offset num to the
pointer value of ptr1. Earlier, we assume all pointer arithmetic stays inbounds, so
the ptr2 and ptr1 have the same base address but (presumably) different offsets.

The load operation accesses the object pointed by ptr from the cache associ-
ated with the corresponding memory bank. To ensure the object is cached, we
use the cacheSync function to check if the cache is missed. If so, we flush the
cache back to the storage with flush if the cache is modified, and then load the
new MRU object by calling refresh. The flush function moves the currently
cached object into storage, while refresh refreshes the cache with the object
pointed by ptr. After that, the object at ptr is in the cache, so the flag used is set
to true. The value of scl in scalar gets updated by the cached field fld. Similarly,
store updates the field for the object, using cacheSync to ensure it is in the
cache. The flag dirty is set to true, indicating the object has been modified.

Overall, RUMM offers a different way to organize C memory by partitioning
it into multiple banks, with additional space (i.e., the cache) to temporarily
hold a memory object for reads and writes. This setup is very convenient for
two reasons: first, it allows strong updates on the cache; second, it provides a
straightforward memory abstraction by summarizing all objects from the same
bank into one and simplifies the design of MRUD, as described in Section 4.

4 An Abstract Domain for Inferring Object Invariants

In this section, we introduce MRUD, a new abstract domain that is a (partially)
reduced product of the domains for scalars, pointers, and objects. After setting
up the domain, we detail key transfer functions and the reduction procedure.

Automatic Inference of Relational Object Invariants 9

Scalar Memory

×

× . . .

Cache Storage

Flag
MB:

(a)

Scalar♯ E♯
sf

E♯
p Memory♯

×

× . . .

Cache♯ Summary♯

Flag♯∧Product Domain

Numerical Domain

Equality Domain

Bool Product Domain

Reduction Direction

MB♯:

(b)

Fig. 7: (a) Concrete domain and (b) MRUD hierarchy.

scalar ∈ Scalar♯
def
= Num(Vscl)

esf ∈ E
♯
sf

def
= Eq(Vscl ∪ Vfld)

ep ∈ E♯p
def
= Eq(Vbase

ptr)

⟨used, dirty, ispk⟩ ∈ Flag♯
def
= Bool♯ × Bool♯ × Bool♯

cache ∈ Cache♯
def
= Num(Vfld)

sum ∈ Summary♯
def
= Num(Vfld)

mb ∈ MB♯
def
= Cache♯ × Summary♯ × Flag♯

mem ∈ Memory♯
def
=

∏
i

{MB
♯
i
}

σ
♯ ∈ State♯

def
= Scalar♯ × MB♯ × E♯p × E

♯
sf

Fig. 8: Abstract semantic domains.

line 7

sz = 2 ∧ i = 1 ∧ . . .

used dirty ispack

true true true

. . .
cap = 2

len = 1 ∧
. . .

cap = 1 ∧
len = 0 ∧

. . .

i ≈ len ∧ sz ≈ cap

pbase ≈ cachebase ∧ . . .

scalar

mb

esf

ep

cache

cache

sum

flag

after
reduce

Fig. 9: State at line 7, 2nd iteration.

Similar to the concrete domain in Fig. 7a, the MRUD is shown in Fig. 7b.
It is a reduced product of four domains: (a) a numerical domain Scalar♯, (b) an
equality domain E♯

p, (c) an equality domain E♯
sf , and (d) a collection of product

domains Memory♯ : {MB♯}. MB♯ is a product of two numerical domains, and three
Boolean domains: Cache♯×Summary♯×Flag♯. Fig. 8 shows the abstract semantic
domains where variables are mapped to unique dimensions of each abstract
domain. Most domains correspond to those in concrete semantics, except for
a few that provide additional information. Specifically, E♯

sf represents the value
equivalence of fields and scalars, which enables information propagation between
Scalar♯ and Cache♯ for domain reduction. E♯

p captures the aliasing properties of
pointers, indicating which pointer refers to which object. The added Boolean
domain in Flag♯ is a flag for later use. All domains are parameterized by relational
abstract domains like Zones [20]. An abstract state σ♯ is represented by lattice
elements within the MRUD.

Fig. 9 shows the abstract state at line 7 during the second iteration of the
CrabIR example from Fig. 4a. We assume that the Zones domain is used for
equality and numerical domains. We only show the invariants for scalars i and
sz, and fields len and cap. scalar shows invariants for the scalars i and sz.
The sole memory bank mb represents the objects of type byte_buf. The cache
shows the invariants for the MRU byte_buf object referenced by pointer p. This
follows from the equality pbase ≈ cachebase in ep . The cache does not have
any explicit invariants for fields. However, the fields invariants are implicitly
represented through the invariants in scalar and the equalities in esf , i ≈ len and

10 Y. Su et al.

Jptr := alloc(fld, num)KRUMM(σ♯) ≡
let ⟨scalar , esf , ep ,mem⟩= σ♯ in
let scalar ′ = forget(scalar , ptr) in
let scalar ′′ = addCons(

scalar ′, ptr ̸= 0) in
let ep

′ = forget(ep , ptr
base) in

⟨scalar ′′, esf , ep ′,mem⟩

Jstore(ptr, fld, scl)KRUMM(σ♯) ≡
let ⟨scalar , esf , ep ,mem⟩= σ♯ in
let mb = findmb♯(fld,mem) in
let ⟨ep ′,mb′⟩= cacheSync♯(

mb, ep , ptr) in
let ⟨cache, sum, ⟨_,_, ispk⟩⟩=mb′ in
let cache ′ = forget(cache, fld) in
let esf

′ = forget(esf , fld) in
let esf

′′ = addEqual(esf
′, scl, fld) in

let flag = ⟨true, true, ispk⟩ in
let mb′′ = ⟨cache ′, sum,flag⟩ in
⟨scalar , esf ′′, ep ′,

mem \ {mb} ∪ {mb′′}⟩

Jptr2, fld2 := gep(ptr1, fld1, num)KRUMM(σ♯) ≡
let ⟨scalar , esf , ep ,mem⟩= σ♯ in
let scalar ′ = forget(scalar , ptr2) in
let scalar ′′ = addCons(

scalar , ptr2 = ptr1+ num) in
let ep

′ = forget(ep , ptr2
base) in

let ep
′′ = addEqual(

ep
′, ptr2base , ptr1base) in

⟨scalar ′′, esf , ep ′′,mem⟩

Jscl := load(ptr, fld)KRUMM(σ♯) ≡
let ⟨scalar , esf , ep ,mem⟩= σ♯ in
let mb = findmb♯(fld,mem) in
let ⟨ep ′,mb′⟩= cacheSync♯(

mb, ep , ptr) in
let scalar ′ = forget(scalar , scl) in
let esf

′ = forget(esf , scl) in
let esf

′′ = addEqual(esf
′, fld, scl) in

⟨scalar ′, esf ′′, ep ′,
mem \ {mb} ∪ {mb′}⟩

Fig. 10: Abstract transformers for memory operations.

sz ≈ cap, that connect fields and scalars. These equalities are established during
field writes. For instance, i ≈ len is there because instruction store(@len, plen,
i) was used to update the field len with scalar i. Finally, sum shows the object
invariants for the objects initialized at the first iteration. Specifically, the fields
of that object satisfy len <= cap.

The most relevant transfer functions for inferring object invariants are shown
in Fig. 10. For the initial state of analysis, we assign all subdomain elements with
⊤, except for flag in each memory bank as ⟨false, false, false⟩. The third flag, ispk ,
is false to indicate the sum does not represent any concrete objects.

For alloc, the transformer assigns a ptr as not NULL in scalar indicating the
valid address of the allocated object that ptr refers to. For gep, the transformer
computes the address for ptr2 by addition in scalar and establishes an equivalence
between ptr2 and ptr1 in ep , denoting that the two pointers refer to the same
memory object. For load/store, the transformer requires that the object referred
by ptr is in the cache before it is accessed. The function cacheSync♯ in Fig. 11
checks for a cache miss and handles operations when a miss happens. It tests
whether ptr refers to the cached object by comparing ptrbase with cachebase in ep .
When the cache is missed, the function performs pack♯ and unpack♯. The pack♯

operation merges cache into sum. The invariants of the first cached object are
copied to sum because, initially, sum does not represent any concrete objects.
We change the flag ispk to true since the sum now holds the invariants for that
object. Any subsequent packs use the join operation. The unpack♯ is achieved by
copying the sum as the new cache. The pack♯ and unpack♯ operations are similar

Automatic Inference of Relational Object Invariants 11

cacheSync♯(mb, ep , ptr) ≡
let ⟨cache, sum, ⟨used , dirty , ispk⟩⟩=mb in
let ⟨ep ′,mb′⟩ =

if ¬used ∧ ¬equals(ep , ptrbase , cachebase) then
let sum ′, ispk ′ = if dirty then pack♯(cache, sum, ispk) else sum, ispk in
let cache ′ = unpack♯(sum ′) in
let ep

′ = forget(ep , cache
base) in

let ep
′′ = addEqual(ep

′, ptrbase , cachebase) in
⟨ep ′′, ⟨cache ′, sum ′, ⟨true, false, ispk ′⟩⟩⟩

else ⟨ep ,mb⟩
in ⟨ep ′,mb′⟩

pack♯(cache, sum, ispk) ≡ if ¬ispk then ⟨copy(cache), true⟩ else ⟨sum⊔cache, ispk⟩
unpack♯(sum) ≡ copy(sum)

Fig. 11: Abstract cache operations.

to the fold and expand in [12] but simpler because cache and sum are two domain
values underlying the same field dimensions. After unpacking, cachebase equals
ptrbase , signifying the cache is for the new MRU object. The transformer then
performs a strong read/update in cache without changing any invariant stored in
sum. The read/update creates an equivalence relation between fld and scl in esf
through addEqual. For field read, the transformer discards the information in scl
before adding the equality. For field update, the transformer forgets information
about fld ahead of setting the equality and sets dirty to true afterward.

Other abstract operators, including join, meet, widening, and narrowing, are
computed pointwise over subdomains with an additional caching step: packing
the dirty cache for each memory bank and resetting it as unused. The full defi-
nition for applying domain operators is available in the extended version of the
paper [27].

We argue that the abstract semantics is sound as it is systematically derived
from the concrete semantics. At each program point, the scalar abstraction over-
approximates the set of numeric values or addresses of each scalar variable. For
memory objects, the abstraction collapses concrete objects in each memory bank
into one summary (abstract) object, also as an over-approximation. The sound-
ness argument follows from our design of abstraction and Galois connections.
We omit it here since the abstraction is straightforward.

Fig. 12 illustrates the computation of abstract states at the loop entry of
Fig. 4a. In Fig. 12a, state s1 represents the an abstract state at the loop entry
after the first iteration opf the loop. Since during the first iteration only one
byte_buf object is initialized, the cache in s1 has the invariants only of that
object: len = 0 and cap = 1, while the summary has no objects (i.e., ispk flag is
unset). The next abstract state is sb (Fig. 12b) after line 11. During the second
iteration, the cache is flushed for the new byte_buf object and the summary only
maintains the invariants for the flushed object. Then, s1 and sb are joined at the
loop entry, resulting in s2 (Fig. 12c). The join is pairwise across subdomains after

12 Y. Su et al.

Loop entry sz = 1 ∧ i = sz ∧ . . .

used dirty ispack

true true false

capacity = 1 ∧
length = 0 ∧

. . .

⊤

pbase ≈ cachebase ∧ . . .

sz ≈ capacity ∧ . . .

scalar

mb
esf

ep

cache

sum

flag

(a) state at iteration 1: s1

Loop entry sz = 2 ∧ i = sz ∧ . . .

used dirty ispack

true true true

capacity = 2 ∧
length = 1 ∧

. . .

capacity = 1 ∧
length = 0 ∧

. . .

pbase ≈ cachebase ∧ . . .

sz ≈ capacity ∧ . . .

scalar

mb
esf

ep

cache

sum

flag

(b) state after Line 11: sb

Loop entry 1 ≤ sz ≤ 2 ∧ i = sz ∧ . . .

used dirty ispack

false false true

⊤

1 ≤ capacity ≤ 2 ∧
length = capacity − 1 ∧

. . .

pbase ≈ cachebase ∧ . . .

sz ≈ capacity ∧ . . .

scalar

mb
esf

ep

cache

sum

flag

(c) state at iteration 2: s2 := s1 ⊔ sb

Loop entry 1 ≤ sz ≤ +∞ ∧ i = sz ∧ . . .

used dirty ispack

false false true

⊤

1 ≤ capacity ≤ +∞ ∧
length = capacity − 1 ∧

. . .

pbase ≈ cachebase ∧ . . .

sz ≈ capacity ∧ . . .

scalar

mb
esf

ep

cache

sum

flag

(d) state at fixpoint: sfix := s1▽s2

Fig. 12: Fixpoint computation for the entry state of the loop in Fig. 4a.

the caches of both states are flushed. Finally, the widening operator is applied
to reach a fixpoint, as shown in Fig. 12d.

As the memory and scalar properties are kept separately, we configure a
domain reduction step to exchange information between each bank’s cache and
scalar through the equalities that are introduced during load and store. We use a
bidirectional reduction (see red arrows on the right of Fig. 7): one direction flows
from the Cache♯ of each memory bank to Scalar♯; the other is in the opposite. The
domain reduction follows Fig. 13 which reduces an abstract state as σ♯ in two
steps by propagates numerical properties (1) from each cache into scalar , and
(2) from the scalar back to each cache. The algorithm computes the iterated
pairwise reduction through reduce which operates on each bank’s cache and
scalar . For example, Fig. 9 shows the cache after applying the reduction whose
values are refined for cap and len based on equalities generated for field updates
through scalars sz and i in scalar . The cache is reduced through the step (2)
which involves reduce converting equalities (len ≈ i and cap ≈ sz) into linear
constraints and adding them to scalar . Then, it performs a meet with cache to
propagate numerical information from scalar . Finally, it projects the result of
the meet to the field variables, and obtains the new cache.

When reduction is executed once, it refines the abstract values in each bank’s
cache and scalar in the state. It adds numerical properties and preserves equali-
ties. This ensures that it is both reductive and sound. We terminate the reduction
after one iteration for each of the two directions.

In summary, we introduce MRUD, a composite abstract domain and its cor-
responding transformer for inferring object invariants. As a reduced product of
domains for scalars and objects, MRUD is effective for scalable analysis. The re-
duction algorithm leverages equalities between variables to avoid precision loss.

Automatic Inference of Relational Object Invariants 13

reduce(basesrc , basedst , e) ≡
let e′ = project(e,Vsrc ∪ Vdst) and cons= toCons(e ′) in

let base
′
dst = project((basedst ⊓ addCons(basesrc , cons)),Vdst) in

base
′
dst

reduction(σ♯) ≡
let ⟨scalar , esf , ep ,mem⟩= σ♯ in
for all mb ∈ mem do ▷ Step 1: reduce from caches to base

let ⟨cache,_,_⟩=mb in
scalar ′ := reduce(cache, scalar , esf)

for all mb ∈ mem do ▷ Step 2: reduce from base to caches
let ⟨cache, sum,flag⟩=mb in
let cache ′ = reduce(scalar ′, cache, esf) in
mb := ⟨cache ′, sum,flag⟩ ▷ Update mb directly

⟨scalar ′, esf , ep ,mem⟩

Fig. 13: Domain reduction.

5 Implementation

We have implemented the MRUD4 in Crab [13], a library for building ab-
stract interpretation-based analyses. The Memory♯ is implemented using a Pa-
tricia tree [24] for structural sharing among multiple abstract elements during
analysis. This approach prevents redundant copying of domain values when com-
puting the outputs of domain operators and transfer functions, allowing efficient
memory sharing for parts of the abstract state that remain unchanged after an
operation. For example, two domain elements of Memory♯ share memory banks
if they are unchanged during computation.

We have developed a custom equality domain based on a union-find data
structure to represent variable equivalence (e.g., x ≈ y). The details of this do-
main are available in the extended version of the paper [27]. Each equivalence
class corresponds to a set of variables (e.g., {pbase , cachebase} as pbase ≈ cachebase

in Fig. 9). This structure fits the representation of equivalence relations and
efficiently supports domain operation. Our implementation also partitions E♯

sf

into reduced product of smaller domains for better alignment with variable
packing [3]. Specifically, we use an equality domain E♯

s for scalars and E♯
f , in

each memory bank, for fields. The domain value of E♯
sf is the union of these

smaller domain values. For example, i ≈ len ∧ sz ≈ cap is maintained as
two classes esf := {i, len}, {sz , cap} which are equivalent to splitted classes as
es := {i, ã}, {sz, b̃} and ef := {len, ã}, {cap, b̃} with special representatives ã, b̃.

For memory partitioning, we use SeaDsa [10] to divide the memory used by
the program into memory banks, with each bank containing objects from the
same allocation site. As mentioned earlier, in CrabIR, a field variable represents
an offset to access an object field. The findmb function of RUMM is defined by

4 Publicly available at https://github.com/LinerSu/crab/tree/VMCAI-2025.

https://github.com/LinerSu/crab/tree/VMCAI-2025

14 Y. Su et al.

Fig. 14: Scalability results. Summarization refers to DS and MRUD to DO.

mapping fields to their corresponding bank. However, in practice, not all field
offsets can be determined statically. We over-approximate the values of such field
by ⊤. Improving this is left for future work.

For effective and efficient domain reduction, we use heuristics to balance
precision and performance. MRUD tracks which direction needs reduction. For
example, if equalities between fields and scalars only affect memory reads, there
is no need to apply a reduction to refine the corresponding cache. We also allow
reduction to be performed on demand. For instance, reduction is applied when
an assertion is present in the program.

6 Evaluation

We performed three kinds of experiments: scale, precision, and case study.
All experiments were conducted on a desktop computer with an Intel Xeon E5-
2680 @2.50GHz, with 256 GB RAM, and are available at https://doi.org/10
.5281/zenodo.13849174.

First, the scale experiment compares the performance of MRUD (DO) with
the summarization-based [13] domain (DS) from Crab by timing analysis of 114
programs: 5 from [13], and 109 from GNU Coreutils [11]. We used the Zones5 [10]
abstract domain for its simplicity and sufficiency in expressing (relational) mem-
ory safety invariants. The primary goal is to show that DO scales better than DS
due to the effect of variable packing [3] in DO that follows from representing each
partition with a different DBM, while DS relies on a single DBM for expressing

5 The Zones domain represents all the binary relationships between two-variable dif-
ference (including zero), stored in a Difference-Bound Matrix (DBM).

https://doi.org/10.5281/zenodo.13849174
https://doi.org/10.5281/zenodo.13849174

Automatic Inference of Relational Object Invariants 15

1 void foo(){
2 char ary1[1], ary2[2];
3 struct byte_buf o1 = {.len = 0,

.cap = 1, .buf=ary1};
4 struct byte_buf o2 = {.len = 1,

.cap = 2, .buf=ary2};
5 struct byte_buf *p;
6 if (/*some conditions*/) {
7 p = &o1;
8 } else {
9 p = &o2;

10 }
11 p->len = 15; p->cap = 20;
12 ...
13 }

Fig. 15: Another C program.

Program #A DO DS DR
safe safe warn safe warn

bytebuf 3 3 0 3 0 3
bytebuf_memcpy 3 3 0 3 0 3
bytebuf_path 3 3 1 2 1 2
ipc_handler 3 3 2 1 2 1
mult_bytebuf 3 3 0 3 0 3
object 1 1 0 1 0 1
range 2 2 1 1 0 2

Table 1: Precision results.

all scalars (included ghost ones) and summary variables. Another goal is to mea-
sure the overhead introduced by domain reduction, which incurs extra costs. To
evaluate this, we provide two additional strategies: FULL, which applies reduc-
tion at each transfer function, and NONE, where no reduction is applied, and
compare them with the heuristic strategy, OPT. These three strategies highlight
the different costs of reduction.

Fig. 14 shows the timing results, with a timeout of 5 000 seconds per program.
Both domains time out on 6 cases, while DS times out on 2 more cases. Excluding
timeout cases, DO outperforms DS on nearly every benchmark. On average, DO
with NONE, OPT, and FULL configurations is 81x, 76x, and 57x faster than DS ,
respectively. This demonstrates the advantage of composite abstract domains
for inferring object invariants in large and complex programs, regardless of the
domain reduction strategy used.

We analyze ginstall from GNU Coreutils to understand why DO is faster.
The running time for DS is 1 846s, while for DO, it takes 273s. Most of the
time in both domains is spent on join operations, where DS spends 600s, while
DO takes 95s. Joining in DO is also efficient because it allows to share DBMs
across memory banks from other states (structural sharing for Memory♯ domain).
Another reason is that most DBMs in DO are small, making their joins less costly
compared to DS , where large DBMs are involved. This efficiency is also reflected
in the time to copy DBMs: DS takes 260s, while DO takes 20s.

As for domain reduction, applying it at each transfer function is inefficient,
as FULL takes 144 (177) seconds longer than OPT (NONE) on average. The
heuristics strategy (OPT) effectively handles complex programs without signifi-
cant performance loss.

Second, the precision experiment compares DO against existing heap ab-
stract domains: DS and Mopsa with recency abstraction (DR). Since all three
domains follow allocation-site abstraction, which summarizes multiple objects
into one and treats them indistinguishable, it becomes challenging to precisely
track field updates on individual concrete objects. Specifically, DS cannot over-
come this limitation. DR improves precision by differentiating the most recently

16 Y. Su et al.

allocated object at the same site. DO provides a more general strategy by dis-
tinguishing the most recently used object. As a result, DO still precisely models
field updates after object initialization, such as field updates on lines 17 and 19
in Fig. 1, which either DR or DS cannot handle.

Another challenge is path sensitivity since unclear pointer aliasing leads to
imprecise modeling of field updates. For example, in Fig. 15, two byte_buf ob-
jects, o1 and o2, are allocated separately, and a pointer p is referred to either o1
or o2. Modeling strong field updates in line 11 requires knowing which object is
being updated, but it is unknown which object the pointer p refers to. Both DR
and DS can track field updates precisely, but they need more accurate points-to
information. DO, however, allows strong updates by placing o1 and o2 in the
same memory bank. When updating a field on either object, we load it into the
cache and perform strong updates without precise pointer aliasing.

We provide a set of 7 benchmarks6 with similar code pattern like examples in
Figs. 1 and 15 for evaluation and configure all three domains using the octagon
domain. Table 1 shows that DO successfully proves all assertions, showing the
effectiveness of our methodology in providing a more precise memory abstraction.
Conversely, DS and DR largely fail due to weak updates, as discussed above.

Third, we present a case study which integrates an Abstract Interpreter
(AbsInt) into a Bounded Model Checker (BMC) pipeline for memory safety
verification. This new pipeline, AI4BMC, uses AbsInt to verify and remove a
number of assertions before passing the problem to the SMT solver.

The AI4BMC pipeline, shown in Fig. 16, starts by compiling and instru-
menting the input program with buffer overflow checks. Next, AbsInt is applied
to remove as many of these checks as possible. Now, the program still keeps
the original loops. Then, the loops are unrolled using a user-supplied bound for
BMC. Later, we run another AbsInt round to eliminate buffer overflow checks
in the simplified program with unrolled loops. Last, we continue with the BMC
pipeline, as in SeaBMC [25], that generates a Verification Condition (VC) in
SMT-LIB and uses an SMT-solver to check the VC’s satisfiability such that the
original program is safe if and only if SMT-LIB formula is unsatisfiable.

The motivation for AI4BMC is that many memory safety arguments are sim-
ple and are established independently of loop bounds. We expect AbsInt to verify
those, leaving less work for BMC. Thus, we consider AI4BMC pipeline successful
if (a) AbsInt discharges some buffer overflow checks before loop unwinding, and
(b) AI4BMC requires less overall runtime than the BMC pipeline.

We developed two benchmark suites from industrial code. The first is based
on aws-c-commons verification tasks, where we reduce assertions only to memory
safety. The second is based on a more complex code from AWS C SDK in C99
implementation. Together, there are 109 verification tasks. The benchmarks7
have been adapted to simplify control flow since proving all memory safety checks
requires path-sensitivity.

6 Available at: https://github.com/LinerSu/MRU-Domain-Benchmarks.
7 Available at https://github.com/LinerSu/verify-c-common/tree/VMCAI-2025.

https://github.com/LinerSu/MRU-Domain-Benchmarks
https://github.com/LinerSu/verify-c-common/tree/VMCAI-2025

Automatic Inference of Relational Object Invariants 17

aws-c-lib

Proof Harness(.c)

LLVM IR
(proof.bc) proof_bnd.bc proof_bnd_ul.bc SeaBMC

CrabSeaDSA

Memory-Info Results

Clang Deref
Insert

Loop
Unroll

Memory-InfoClam

Fig. 16: The AI4BMC pipeline.

Fig. 17: AI4BMC vs. BMC.

We evaluate the effectiveness AI4BMC by comparing it with SeaBMC which
was previously compared against other state-of-the-art tools in [25]. Our perfor-
mance evaluation focuses on these metrics: (1) Faster indicates AI4BMC out-
performs BMC; (2) Slower means AI4BMC is slower than BMC; (3) AbsInt
Time expresses the run-time of AbsInt in the AI4BMC pipeline. For precision,
we provide the AbsInt Solving Rate, showing how many checks are solved before
or after loop unrolling (LU). We used MRUD for Crab (AbsInt) and chose two
SMT-solvers for SeaBMC: Z38 [23], and Yices2 [9]. Experiments were con-
ducted under 900 seconds timeout and all results are summarized in Fig. 17
and Table 2.

First, comparing performance between AI4BMC and BMC. With Z3, AI4BMC
timed out in 5 cases, while BMC timed out in 7 cases; AbsInt helped solving
2 more cases. Excluding timeouts, AI4BMC is at least 5s faster than BMC in
16 cases. The speed-up comes from AbsInt proving and discharging assertions
checks. In 10 of these 16 cases, the speed-up exceeds over 95%, with AbsInt

8 We fixed the performance issue on Z3. The one we used is available at:
https://github.com/LinerSu/z3/tree/fix-performance.

https://github.com/LinerSu/z3/tree/fix-performance

18 Y. Su et al.

Category Metric % Metric Number of Cases
AI4BMC (Z3) AI4BMC (Y2)

Performance Comparison
Faster (Time Difference > 5s) > 95% 10 2

others 6 1

Slower (Time Difference > 5s) ≤ 50% 4 2
others 0 4

AbsInt Performance AbsInt Time in AI4BMC time > 40% 65 74
≤ 40% 39 29

Precision
AbsInt Solving Rate before LU 100% 37 37

> 50% 52 52

AbsInt Solving Rate after LU 100% 6 6
> 50% 1 1

Table 2: AI4BMC vs. BMC details.

completely solving the checks in 9 cases. The other 6 cases show at least a 20%
speed-up. AbsInt takes under one second on average in all 16 cases. There are
4 cases in which AI4BMC is at least 5s slower than BMC. In two of these, the
slowdowns are due to Z3 taking 6s extra solving time on average, which is not
surprising since the SMT performance is not always deterministic. In the other
two, although Z3 solving time is decreased, AbsInt slows down by taking around
11s, roughly a third of the total run-time.

The results with Yices2 are similar, but Yices2 is faster and exhibits better
stability. Both AI4BMC and BMC timed out in 4 cases and 5 cases individually,
with 1 case where AbsInt improves performance. AI4BMC outperforms BMC
in 3 cases with at least a 93% improvement. However, AI4BMC is slower in 6
cases, 4 of which are affected by the slowdown of AbsInt. The other 2 cases are
due to the slows down of SeaBMC and Yices2. The SeaBMC experiences a
slowdown due to lambda-encoding, where the beta-reduction simplification time
is not deterministic. While switching to array-encoding shows the effectiveness
of AbsInt, this slows overall performance for both AI4BMC and BMC.

Overall, the performance results show that AbsInt improves the overall per-
formance of using BMC regardless of the solver used.

Second, in evaluating the performance of AbsInt, runtime ratios depend on
the total running time of AI4BMC and the solver selected. With Z3, AbsInt
takes over 40% of the time on 65 cases, but these cases terminate within 50s,
with AbsInt averaging only 0.1s and maxing at 1.2s. For the rest of the 39 cases,
AbsInt takes 40% or less, with 5 cases exceeding 50s and 34 cases under 50s.
For these 5 longer cases, AbsInt accounts for under 2%, averaging 1s with a
maximum of 1.5s. For the 34 shorter cases, AbsInt contribution was below 36%.
With Yices2, the runtime percentage of AbsInt increases because Yices2 is
efficient, with more cases where AbsInt accounts for a significant portion of the
runtime. In summary, using AbsInt has no big cost, compared with the solving
time of SMT solver.

Last, for assertion rate, AbsInt solved more than 50% of assertions in 89
cases before LU, completely solving 37 cases, and in 7 cases after LU, fully
solving 6 cases. We only have 8 cases where AbsInt solves less than half of
the checks. The reasons are: (1) the widening operation produces too imprecise

Automatic Inference of Relational Object Invariants 19

invariants that cannot be recovered by narrowing. AbsInt needs more precise
widening techniques to prove more checks; (2) Some memory safety invariants
cannot be expressed by Zones or Octagons, and instead require more complex
abstract domains such as Polyhedra; (3) Memory safety checks for C string
require tracking the length of strings that our implementation does not support.
We believe using [15] to determine the null character of each string will improve
overall precision.

In this case study, we demonstrate the effectiveness of using AbsInt in the
BMC pipeline. By using the Zones, it proves most memory safety checks in this
industry project and reduces the number of checks BMC handles. This speeds
up both BMC encoding and SMT solver performance.

7 Related Works

To deal with a potentially unbounded number of memory objects, most abstract
analysis frameworks group memory objects together into summary objects (e.g.,
[12]). A summary object represents properties that are common to all objects
it stands for. The most common summarization is Allocation Site Abstraction
(ASA) [5] that groups objects by their allocation site. In ASA, all concrete ob-
jects allocated at a certain line of a program are represented by one abstract
summary object. Since each summary object represents a set of objects, it sup-
ports only weak updates – an assignment to the field of an object does not
override previous value, but rather adds to it, to capture that the field update
may modify only one object out of the summary. This significantly degrades
analysis precision.

The loss of precision is specifically important during object creation, when
an object is first allocated and then initialized field-by-field. In ASA, because of
weak updates, this results in all properties of the summary being lost since the
newly allocated object has no properties in common with already summarized
objects. A common solution, e.g., used by Mopsa, is recency abstraction [1] that
refines ASA into: (a) the most recently allocated object, and (b) the rest. Since
most recent object is a singleton, it can be updated strongly, i.e., field updates
overwrite previous values. Our approach is a further refinement that separates
objects not by recency of creation, but by recency of use. In principle, other
extensions of recency, such as [2] can be combined with our technique for further
precision improvement.

The temporary isolation of recenctly-used objects avoids invariant violations
in summarized objects during individual field updates. Our pack and unpack
methods communicate changes between these two types of objects. This is sim-
ilar to corresponding methods in [4], where the annotated pack/unpack state-
ments manage transitions of mutable objects during class method calls, allowing
temporary updates while maintaining class invariants (i.e., invariants for all in-
stances of a given class). Similarly, JayHorn [16] uses push/pull statements for
encoding each memory access. Each pull statement reads fields of an object to
make invariants available, while a following push statement updates fields to

20 Y. Su et al.

ensure modifications preserve invariants. The concept of pack/unpack has been
used in refinement types [26], where the inference algorithm obtains predicates
with fold/unfold operations to prevent temporary invariant violations of objects
from the same allocation site. Unlike our work, all prior work uses heuristics to
manage placement of fold/unfold operations. In contrast, our analysis automat-
ically processes these during analysis.

The domain hierarchy in our MRUD uses two strategies. First, variable pack-
ing [3] is used to pack program variables for fields of memory objects in each
memory bank. With two numerical domains per pack, our approach allows for
the independent updating of invariants for each bank. The packing is rarely used
in computing memory properties, but Toubhans et al. [28] introduced a product
of memory domains that pack variables used for lists, trees, and other fixed-size
structures. Second, domain reduction [6] helps exchange equivalences between
scalars and object fields. This is commonly used when abstract domains are or-
ganized modularly. Astrée [7] combines various abstract domains in a sequence,
using reduction steps for forward and backward propagation of information be-
tween them. [8] interprets the Nelson-Oppen procedure as a domain reduction,
propagating (dis)equalities across domains.

8 Conclusion

In this work, we present a new methodology for inferring object invariants that
avoids temporarily breaking invariants following the concept of caching. Our new
abstract domain, parameterized by numerical and equality domains, organizes a
structured hierarchy, enabling scalable analysis of complex programs. We design
a reduction algorithm following equalities introduced across numerical domains
to avoid significant precision loss. Our results demonstrate that MRUD enhances
both precision and scalability and can be effectively integrated with other veri-
fication techniques for memory safety.

References

1. Balakrishnan, G., Reps, T.W.: Recency-abstraction for heap-allocated storage. In:
Yi, K. (ed.) Static Analysis, 13th International Symposium, SAS 2006, Seoul,
Korea, August 29-31, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4134, pp. 221–239. Springer (2006). https://doi.org/10.1007/11823230_15,
https://doi.org/10.1007/11823230_15

2. Balatsouras, G., Smaragdakis, Y.: Structure-sensitive points-to analysis for C and
C++. In: Rival, X. (ed.) Static Analysis - 23rd International Symposium, SAS 2016,
Edinburgh, UK, September 8-10, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9837, pp. 84–104. Springer (2016). https://doi.org/10.1007/978-3
-662-53413-7_5, https://doi.org/10.1007/978-3-662-53413-7_5

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Cytron, R.,
Gupta, R. (eds.) Proceedings of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation 2003, San Diego, California, USA, June

https://doi.org/10.1007/11823230_15
https://doi.org/10.1007/11823230_15
https://doi.org/10.1007/11823230_15
https://doi.org/10.1007/978-3-662-53413-7_5
https://doi.org/10.1007/978-3-662-53413-7_5
https://doi.org/10.1007/978-3-662-53413-7_5
https://doi.org/10.1007/978-3-662-53413-7_5
https://doi.org/10.1007/978-3-662-53413-7_5

Automatic Inference of Relational Object Invariants 21

9-11, 2003. pp. 196–207. ACM (2003). https://doi.org/10.1145/781131.781153,
https://doi.org/10.1145/781131.781153

4. Chang, B.E., Leino, K.R.M.: Inferring object invariants: Extended abstract. In:
Cortesi, A., Logozzo, F. (eds.) Proceedings of the First International Workshop
on Abstract Interpretation of Object-oriented Languages, AIOOL@VMCAI 2005,
Paris, France, January 21, 2005. Electronic Notes in Theoretical Computer Science,
vol. 131, pp. 63–74. Elsevier (2005). https://doi.org/10.1016/J.ENTCS.2005.0
1.023, https://doi.org/10.1016/j.entcs.2005.01.023

5. Chase, D.R., Wegman, M.N., Zadeck, F.K.: Analysis of pointers and structures.
In: Fischer, B.N. (ed.) Proceedings of the ACM SIGPLAN’90 Conference on Pro-
gramming Language Design and Implementation (PLDI), White Plains, New York,
USA, June 20-22, 1990. pp. 296–310. ACM (1990). https://doi.org/10.1145/93
542.93585, https://doi.org/10.1145/93542.93585

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Aho,
A.V., Zilles, S.N., Rosen, B.K. (eds.) Conference Record of the Sixth Annual ACM
Symposium on Principles of Programming Languages, San Antonio, Texas, USA,
January 1979. pp. 269–282. ACM Press (1979). https://doi.org/10.1145/5677
52.567778, https://doi.org/10.1145/567752.567778

7. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
Combination of abstractions in the astrée static analyzer. In: Okada, M., Satoh, I.
(eds.) Advances in Computer Science - ASIAN 2006. Secure Software and Related
Issues, 11th Asian Computing Science Conference, Tokyo, Japan, December 6-8,
2006, Revised Selected Papers. Lecture Notes in Computer Science, vol. 4435, pp.
272–300. Springer (2006). https://doi.org/10.1007/978-3-540-77505-8_23,
https://doi.org/10.1007/978-3-540-77505-8_23

8. Cousot, P., Cousot, R., Mauborgne, L.: The reduced product of abstract domains
and the combination of decision procedures. In: Hofmann, M. (ed.) Foundations of
Software Science and Computational Structures - 14th International Conference,
FOSSACS 2011, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6604, pp. 456–472. Springer
(2011). https://doi.org/10.1007/978-3-642-19805-2_31, https://doi.org/
10.1007/978-3-642-19805-2_31

9. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Lecture Notes in
Computer Science, vol. 8559, pp. 737–744. Springer (2014). https://doi.org/10.1
007/978-3-319-08867-9_49, https://doi.org/10.1007/978-3-319-08867-9_49

10. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Exploit-
ing sparsity in difference-bound matrices. In: Rival, X. (ed.) Static Analysis
- 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10,
2016, Proceedings. Lecture Notes in Computer Science, vol. 9837, pp. 189–211.
Springer (2016). https://doi.org/10.1007/978-3-662-53413-7_10, https:
//doi.org/10.1007/978-3-662-53413-7_10

11. GNU Project: Gnu core utilities official page, https://www.gnu.org/software/c
oreutils/

12. Gopan, D., DiMaio, F., Dor, N., Reps, T.W., Sagiv, S.: Numeric domains with
summarized dimensions. In: Jensen, K., Podelski, A. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems, 10th International Con-
ference, TACAS 2004, Held as Part of the Joint European Conferences on The-

https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781153
https://doi.org/10.1016/J.ENTCS.2005.01.023
https://doi.org/10.1016/J.ENTCS.2005.01.023
https://doi.org/10.1016/J.ENTCS.2005.01.023
https://doi.org/10.1016/J.ENTCS.2005.01.023
https://doi.org/10.1016/j.entcs.2005.01.023
https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-540-77505-8_23
https://doi.org/10.1007/978-3-540-77505-8_23
https://doi.org/10.1007/978-3-540-77505-8_23
https://doi.org/10.1007/978-3-642-19805-2_31
https://doi.org/10.1007/978-3-642-19805-2_31
https://doi.org/10.1007/978-3-642-19805-2_31
https://doi.org/10.1007/978-3-642-19805-2_31
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-662-53413-7_10
https://doi.org/10.1007/978-3-662-53413-7_10
https://doi.org/10.1007/978-3-662-53413-7_10
https://doi.org/10.1007/978-3-662-53413-7_10
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/

22 Y. Su et al.

ory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April
2, 2004, Proceedings. Lecture Notes in Computer Science, vol. 2988, pp. 512–
529. Springer (2004). https://doi.org/10.1007/978-3-540-24730-2_38,
https://doi.org/10.1007/978-3-540-24730-2_38

13. Gurfinkel, A., Navas, J.A.: Abstract interpretation of LLVM with a region-based
memory model. In: Bloem, R., Dimitrova, R., Fan, C., Sharygina, N. (eds.) Software
Verification - 13th International Conference, VSTTE 2021, New Haven, CT, USA,
October 18-19, 2021, and 14th International Workshop, NSV 2021, Los Angeles,
CA, USA, July 18-19, 2021, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 13124, pp. 122–144. Springer (2021). https://doi.org/10.1007/97
8-3-030-95561-8_8, https://doi.org/10.1007/978-3-030-95561-8_8

14. Huston, B.: Single-chip microcomputers can be easy to program. In: American Fed-
eration of Information Processing Societies: 1982 National Computer Conference,
7-10 June, 1982, Houston, Texas, USA. AFIPS Conference Proceedings, vol. 51,
pp. 85–93. AFIPS Press (1982). https://doi.org/10.1145/1500774.1500786,
https://doi.org/10.1145/1500774.1500786

15. Journault, M., Miné, A., Ouadjaout, A.: Modular static analysis of string ma-
nipulations in C programs. In: Podelski, A. (ed.) Static Analysis - 25th Interna-
tional Symposium, SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceed-
ings. Lecture Notes in Computer Science, vol. 11002, pp. 243–262. Springer (2018).
https://doi.org/10.1007/978-3-319-99725-4_16, https://doi.org/10.1007/
978-3-319-99725-4_16

16. Kahsai, T., Kersten, R., Rümmer, P., Schäf, M.: Quantified heap invariants for
object-oriented programs. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st Inter-
national Conference on Logic for Programming, Artificial Intelligence and Rea-
soning, Maun, Botswana, May 7-12, 2017. EPiC Series in Computing, vol. 46,
pp. 368–384. EasyChair (2017). https://doi.org/10.29007/ZRCT, https:
//doi.org/10.29007/zrct

17. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6,
133–151 (1976). https://doi.org/10.1007/BF00268497, https://doi.org/10.1
007/BF00268497

18. Lattner, C., Adve, V.S.: Automatic pool allocation: improving performance by
controlling data structure layout in the heap. In: Sarkar, V., Hall, M.W. (eds.)
Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, IL, USA, June 12-15, 2005. pp. 129–142.
ACM (2005). https://doi.org/10.1145/1065010.1065027, https://doi.org/10
.1145/1065010.1065027

19. Meyer, B.: Object-oriented software construction (2nd ed.). Prentice-Hall, Inc.,
USA (1997)

20. Miné, A.: A new numerical abstract domain based on difference-bound matrices.
In: Danvy, O., Filinski, A. (eds.) Programs as Data Objects, Second Symposium,
PADO 2001, Aarhus, Denmark, May 21-23, 2001, Proceedings. Lecture Notes in
Computer Science, vol. 2053, pp. 155–172. Springer (2001). https://doi.org/10
.1007/3-540-44978-7_10, https://doi.org/10.1007/3-540-44978-7_10

21. Miné, A.: The octagon abstract domain. In: Burd, E., Aiken, P., Koschke, R. (eds.)
Proceedings of the Eighth Working Conference on Reverse Engineering, WCRE’01,
Stuttgart, Germany, October 2-5, 2001. p. 310. IEEE Computer Society (2001).
https://doi.org/10.1109/WCRE.2001.957836, https://doi.org/10.1109/WCRE
.2001.957836

https://doi.org/10.1007/978-3-540-24730-2_38
https://doi.org/10.1007/978-3-540-24730-2_38
https://doi.org/10.1007/978-3-540-24730-2_38
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1145/1500774.1500786
https://doi.org/10.1145/1500774.1500786
https://doi.org/10.1145/1500774.1500786
https://doi.org/10.1007/978-3-319-99725-4_16
https://doi.org/10.1007/978-3-319-99725-4_16
https://doi.org/10.1007/978-3-319-99725-4_16
https://doi.org/10.1007/978-3-319-99725-4_16
https://doi.org/10.29007/ZRCT
https://doi.org/10.29007/ZRCT
https://doi.org/10.29007/zrct
https://doi.org/10.29007/zrct
https://doi.org/10.1007/BF00268497
https://doi.org/10.1007/BF00268497
https://doi.org/10.1007/BF00268497
https://doi.org/10.1007/BF00268497
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1109/WCRE.2001.957836

Automatic Inference of Relational Object Invariants 23

22. Monat, R., Ouadjaout, A., Miné, A.: Mopsa-c: Modular domains and relational
abstract interpretation for C programs (competition contribution). In: Sankara-
narayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 29th International Conference, TACAS 2023, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Paris, France, April 22-27, 2023, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 13994, pp. 565–570. Springer (2023). https://doi.org/10.1007/97
8-3-031-30820-8_37, https://doi.org/10.1007/978-3-031-30820-8_37

23. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Sci-
ence, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3
-540-78800-3_24, https://doi.org/10.1007/978-3-540-78800-3_24

24. Okasaki, C., Gill, A.: Fast mergeable integer maps. In: Notes of the ACM SIGPLAN
Workshop on ML. pp. 77–86 (1998)

25. Priya, S., Su, Y., Bao, Y., Zhou, X., Vizel, Y., Gurfinkel, A.: Bounded model
checking for LLVM. In: Griggio, A., Rungta, N. (eds.) 22nd Formal Methods in
Computer-Aided Design, FMCAD 2022, Trento, Italy, October 17-21, 2022. pp.
214–224. IEEE (2022). https://doi.org/10.34727/2022/ISBN.978-3-85448-0
53-2_28, https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_28

26. Rondon, P.M., Kawaguchi, M., Jhala, R.: Low-level liquid types. In: Hermenegildo,
M.V., Palsberg, J. (eds.) Proceedings of the 37th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2010, Madrid, Spain,
January 17-23, 2010. pp. 131–144. ACM (2010). https://doi.org/10.1145/1706
299.1706316, https://doi.org/10.1145/1706299.1706316

27. Su, Y., Navas, J.A., Gurfinkel, A., Garcia-Contreras, I.: Automatic inference of
relational object invariants (2024), https://arxiv.org/abs/2411.14735

28. Toubhans, A., Chang, B.E., Rival, X.: An abstract domain combinator for sepa-
rately conjoining memory abstractions. In: Müller-Olm, M., Seidl, H. (eds.) Static
Analysis - 21st International Symposium, SAS 2014, Munich, Germany, Septem-
ber 11-13, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8723, pp.
285–301. Springer (2014). https://doi.org/10.1007/978-3-319-10936-7_18,
https://doi.org/10.1007/978-3-319-10936-7_18

https://doi.org/10.1007/978-3-031-30820-8_37
https://doi.org/10.1007/978-3-031-30820-8_37
https://doi.org/10.1007/978-3-031-30820-8_37
https://doi.org/10.1007/978-3-031-30820-8_37
https://doi.org/10.1007/978-3-031-30820-8_37
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_28
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_28
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_28
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_28
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_28
https://doi.org/10.1145/1706299.1706316
https://doi.org/10.1145/1706299.1706316
https://doi.org/10.1145/1706299.1706316
https://doi.org/10.1145/1706299.1706316
https://doi.org/10.1145/1706299.1706316
https://arxiv.org/abs/2411.14735
https://doi.org/10.1007/978-3-319-10936-7_18
https://doi.org/10.1007/978-3-319-10936-7_18
https://doi.org/10.1007/978-3-319-10936-7_18

	Automatic Inference of Relational Object Invariants

