
TRACER: A Symbolic Execution Tool for Verification ∗

Joxan Jaffar1, Vijayaraghavan Murali1, Jorge A. Navas2, and Andrew E. Santosa3

1National University of Singapore
2The University of Melbourne

3University of Sydney

Abstract. We presentTRACER, a verifier for safety properties of sequential C
programs. It is based on symbolic execution (SE) and its unique features are in
how it makesSE finite in presence of unbounded loops and its use of interpolants
from infeasible paths to tackle thepath-explosionproblem.

1 Introduction
Recentlysymbolic execution (SE) [15] has been successfully proven to be an alternative
to CEGAR for program verification offering the following benefits among others [12,
18]: (1) it does not explore infeasible paths avoiding expensive refinements, (2) it avoids
expensivepredicate imagecomputations (e.g.,CartesianandBooleanabstractions [2]),
and (3) it can recover fromtoo-specificabstractions as opposed to monotonic refine-
ment schemes often used. Unfortunately, it poses its own challenges: (C1) exponential
number of paths, and (C2) infinite-length paths in presence of unbounded loops.

We presentTRACER, a SE-based verification tool forfinite-statesafety properties
of sequential C programs. Informally,TRACER attempts at building a finite symbolic
execution tree which overapproximates the set of all concrete reachable states. If the
error location cannot be reached from any symbolic path thenthe program is reported
as safe. Otherwise, either the program may contain a bug or itmay not terminate. The
most innovative features ofTRACER stem from how it tackles (C1) and (C2).

In this paper, we describe the main ideas behindTRACER and its implementation as
well as our experience in running real benchmarks.

1.1 State-Of-The-Art Interpolation-Based Verification Tools

SLAM

FSOFT

SATABS

BLAST

HSF/ARMC

YOGI

CPA-CHECKER

KRATOS
IMPACT II

TRACER

Lazy Eager

Weaker

Stronger

Fig. 1.State-of-the-art verifiers

Fig. 1 depicts one possible view of current veri-
fication tools based on two dimensions:laziness
and interpolation strength. Lazy means that the
tool starts from a coarsely abstracted model and
then refines it whileeageris its dual, starting with
the concrete model and then removing irrelevant
facts. CEGAR-based tools [1, 4, 7, 10, 21] are the
best examples of lazy approaches whileSE-based
tools [12, 18] are for eager methods. Special men-

tion is required for hybrid approaches such asYOGI [20], CPA-CHECKER [3], and
KRATOS [5]. YOGI computes weakest preconditions from symbolic execution ofpaths

∗This paper extends the ideas published in [12, 13] by describing a methodfor computing
weakest preconditions as interpolants as well as a detailed description of the architecture of the
tool and a new experimental evaluation.



as a cheap refinement forCEGAR. One disadvantage is that it cannot recover from too-
specific refinements (see programdiamondin [18]). CPA-CHECKER and KRATOS en-
code loop-free blocks into Boolean formulas that are then subjected to anSMT solver in
order to exploit its (learning) capabilities and avoid refinements due to coarser abstrac-
tions often used inCEGAR. On the other hand, the performance of interpolation-based
verifiers depends on the logical strength of the interpolants1. In lazy approaches, a weak
interpolant may contain spurious errors and cause refinements too often. Stronger in-
terpolants may delay convergence to a fixed point. In eager approaches, weaker inter-
polants may be better (e.g., for loop-free fragments) than stronger ones since they allow
removing more irrelevant facts from the concrete model.

TRACER performsSE computing efficient approximatedweakest preconditionsas
interpolants. To the best of our knowledge,TRACER is the first publicly available (paella.
d1.comp.nus.edu.sg/tracer) verifier with these characteristics.

2 How TRACER Works

Essentially,TRACER implements classical symbolic execution [15] with some novel
features that we will outline along this section. It takes symbolic inputs rather than
actual data and executes the program considering those symbolic inputs. During the ex-
ecution of a path all its constraints are accumulated in a first-order logic (FOL) formula
calledpath condition (PC). Whenever code of the formif(C) then S1else S2 is reached
the execution forks the current symbolic state and updates path conditions along both
the paths:PC1 ≡ PC∧C andPC2 ≡ PC∧¬ C. Then, it checks if eitherPC1 orPC2

is unsatisfiable. If yes, then the path isinfeasibleand the execution halts backtracking to
the last choice point. Otherwise, it follows the path. The verification problem consists of
building afinite symbolic execution tree that overapproximates all concrete reachable
states and proving for every symbolic path the error location is unreachable.

The first key aspect ofTRACER, originally proposed in [13] for symbolic execu-
tion, is the avoidance of full enumeration of symbolic pathsby learningfrom infeasible
paths computinginterpolants[8]. Preliminary versions ofTRACER [12, 13] computed
interpolants based onstrongest postconditions (sp). Given two formulasA (symbolic
path) andB (last guard where infeasibility is detected) such thatA ∧ B is unsat, an
interpolant was obtained by∃x ·A wherex areA-local variables (i.e., variables occur-
ring only inA). However, unlikeCEGAR, TRACERstarts from the concrete model of the
program and then deletes irrelevant facts. Therefore, the weaker the interpolant is the
more likely it is forTRACER to avoid exploring other “similar” symbolic paths. This is
the motivation behind an interpolation method based onweakest preconditions (wp).

Example 1.The verification of the contrived program in Fig. 2(a) illustrates the need
for wp as well as the essence of our approach to mitigate the “path-explosion” problem.
Fig. 2(b) shows the first symbolic path explored byTRACER which is infeasible.(*)
means that the evaluation of the guard can betrue or false. After renaming we obtain
the unsatisfiable constraintss0 = 0 ∧ s1 = s0 + 1 ∧ s2 = s1 + 1 ∧ s2 > 10. State-
of-the-art interpolation techniques will annotate every location with its corresponding

1Given formulasA andB such thatA∧B is unsatisfiable, aCraig interpolant[8] I satisfies:
(1) A |= I, (2) I ∧ B is unsatisfiable, and (3) its variables are common toA andB. We say an
interpolantI is stronger (weaker) thanI ′ if I |= I

′ (I ′ |= I).



〈0〉 s=0;
〈1〉 if(*)
〈2〉 s++;

else
〈3〉 s+=2;
〈4〉 if(*)
〈5〉 s++;

else
〈6〉 s+=2;
〈7〉 if(s> 10)
〈8〉 error();
〈9〉

s++

s++

s=0

s>10

1

2

4

5

7

9false

s<=2

s<=1

s<=0

s<=0

s<=1

true

(*)

(*)

s<=10

s++

2

4

false

s<=2

s<=1

s<=0

false

1

s=0

6

7

9 9

5

7

s++ s+=2

s>10

s<=1

s<=0

true

(*)

(*)
(*)

s>10 s<=10

s++

2

4

false

s<=2

s<=1

s<=0

false

1

s+=2

s=0

6

7

9 9

5

false false

4

3

7

9 9

5

7

s++ s+=2

s>10
7

s++ s+=2

6

true

s<=0

s<=1

(*)
(*)

(*)
(*) (*) (*)

s>10 s>10 s>10 s<=10

(a) (b) (c) (d)

Fig. 2. Symbolic Trees with Strongest Postconditions orCLP-PROVER(runningTRACER on pro-
gram in Fig. 2(a) with options-intp sp or -intp clp)

s++

s++

s=0

1

2

4

5

7

9false

s<=10

s<=9

s<=8

true

s<=8

s<=9

(*)

(*)

s>10 s<=10

s++

s++ s+=2

s=0

s>10

1

2

4

5 6

7 7

9false

s<=10

s<=9

s<=8

true

s<=8

s<=9

(*)

(*)
(*)

s<=10

subsumed

s++

s++ s+=2

s=0

s>10

1

2

4

5 6

7 7

9false

s<=10

s<=9

s<=8

4

2

true

s<=9

s<=8

s+=2
subsumed

subsumed

(*)
(*)

(*)
(*)

s<=10

(a) (b) (c)

Fig. 3.Symbolic Trees with Weakest Preconditions (runningTRACER with -intp wp)

interpolant:ι1 : s0 ≤ 0, ι2 : s0 ≤ 0, ι4 : s1 ≤ 1, ι5 : s1 ≤ 1, andι7 : s2 ≤ 2 where
ιk refers to the interpolant at locationk. In all figures, interpolants are enclosed in (red)
boxes. Fig. 2(c) shows the tree after the second symbolic path has been explored. At
location7 of the second pathTRACER tests if the current symbolic states0 = 0 ∧ s1 =
s0 + 1 ∧ s2 = s1 + 2 is subsumed2 by ι7 : s2 ≤ 2, the interpolant at7. However, this
tests fails sinces0 = 0 ∧ s1 = s0 + 1 ∧ s2 = s1 + 2 6|= s2 ≤ 2. Similarly, TRACER

attempts again at location4 of the third path in Fig. 2(d) if the new symbolic path can
be subsumed by a previous explored path. Here, it tests ifs0 = 0∧ s1 = s0 +2 implies
ι4 : s1 ≤ 1 but again it fails.TRACER can prove the program is safe but the symbolic
execution tree built is exponential on the number of programbranches. ⊓⊔

For efficiency,TRACER under-approximates the weakest precondition by a mix of
existential quantifier elimination, unsatisfiable cores, and some heuristics. Whenever
an infeasible path is detected we compute¬ (∃y ·G), thepostconditionthat we want to
map into aprecondition, whereG is the guard where the infeasibility is detected andy
areG-local variables. The two main rules for propagating wp’s are:

2A symbolic stateσ is subsumedor coveredby another symbolic stateσ′ if they refer to same
location and the set of states represented byσ is a subset of those represented byσ

′. Alternatively,
if σ andσ′ are seen as formulas thenσ is subsumed byσ′ if σ |= σ

′.



(A) wp(x := e, Q) = Q[e/x]
(B) wp(if(C) S1 else S2,Q) = (C ⇒ wp(S1, Q)) ∧ (¬ C ⇒ wp(S2, Q))

Rule (A) replaces all occurrences ofx with e in the formulaQ. The challenge is how to
produce efficient (conjunctive) formulas from rule (B) as weak as possible to increase
the likelihood of subsumption. During the forwardSE when an infeasible path is de-
tected we discardirrelevantguards by using the concept ofunsatisfiable cores (UC)3 to
avoid growing the wp formula unnecessarily. For instance, the formulaC ⇒ wp(S1, Q)
can be replaced withwp(S1, Q) if C 6∈ C whereC is a (not necessarily minimal) UC.
Otherwise, we underapproximateC ⇒ wp(S1, Q) as follows. Letd1 ∨ . . . ∨ dn be
¬ wp(S1, Q) then we compute

∧
1≤i≤n

(¬ (∃ x′ · (C ∧ di))), where existential quan-

tifier elimination removes the post-state variablesx′. A very effective heuristic if the
resulting formula is disjunctive is to delete those conjuncts that are not implied byC
because they are more likely to be irrelevant to the infeasibility reason.

Example 2.Coming back to the program in Fig 2(a). Fig. 3(a) shows the same first
symbolic path explored byTRACER but annotated with weakest preconditions:ι1 :
s0 ≤ 8, ι2 : s0 ≤ 8, ι4 : s1 ≤ 9, ι5 : s1 ≤ 9, andι7 : s2 ≤ 10. In this example, the
wp computations are notably simplified since the guards are clearly irrelevant for the
infeasibility of the path, and hence, only rule (A) is triggered. For instance,ι7 : s2 ≤ 10
is obtained by¬ (∃V \ {s2} · s2 > 10) ≡ s2 ≤ 10 whereV is the set of all program
variables (including renamed variables), andι6 : s1 ≤ 9 is obtained bywp(s2 = s1+1,
s2 ≤ 10) = s1 ≤ 9. Fig. 3(b) shows the second symbolic path but note that the path
can be now subsumed at location7 since the symbolic states0 = 0 ∧ s1 = s0 + 1 ∧
s2 = s1 + 2 |= s2 ≤ 10. Dashed edges represent subsumed paths and are labelled
with “subsumed”. Finally, Fig. 3(c) illustrates how the third symbolic path can be also
subsumed at location4 sinces0 = 0 ∧ s1 = s0 + 2 |= s1 ≤ 9. TRACER proves safety
again but the size of the symbolic tree is now linear on the number of branches. ⊓⊔

With unbounded loops the only hope to produce a proof isabstraction. In a nutshell,
upon encountering a cycleTRACER computes thestrongestpossible loop invariantsΨ
by using widening techniques in order to make theSE finite. If a spurious abstract error
is found then arefinement phase(similar toCEGAR) discovers an interpolantI that rules
the spurious error out. After restart,TRACER strengthensΨ by conjoining it withI and
the symbolic execution checkspath by pathif the new strengthened formula is loop
invariant. If this test fails for a pathπ, thenTRACER unrollsπ one more iteration and
continues with the process. Notice that the generation of invariants isdynamicin the
sense that loop unrolls will expose new constraints producing new invariant candidates.
For lack of space, we refer readers to [12] for technical details. Here, we illustrate how
TRACER handles unbounded loops through the classical example described in Fig 4(a).

Example 3.TRACER executes the program until a cycle is found and checks whether
a certain set of loop candidates holds after the execution ofthe cycle. We obtain the
symbolic pathπ1 ≡ lock0 = 0 ∧ new0 = old0 + 1 ∧ (new0 6= old0) ∧ lock1 =
1 ∧ old1 = new0 from executing theelse branch, shown in Fig. 4(b). Assume a
widening∇ defined asc ∇ c′ , c if c′ |= c otherwisetrue, wherec andc′ are the

3Given a constraint setS whose conjunction is unsatisfiable, anunsatisfiable core (UC)S′ is
any unsatisfiable subset ofS. An UCS

′ is minimal if any strict subset ofS′ is satisfiable.



〈0〉 lock=0; new=old+1;
〈1〉 while(new 6= old) {
〈2〉 lock=1; old=new;
〈3〉 if(*)
〈4〉 lock=0;new++;
〈5〉 }
〈6〉 if(lock== 0)
〈7〉 error();
〈8〉

lock=0, new=old+1

lock=1, new=old

1

2

3

5

0

1

(new != old)
{lock = 0, new = old+1}

{lock = 1, new = old}

(*)
subsumed

lock=0, new=old+1

lock=1, new=old

1

2

3

5

0

1

(new != old)

{lock = 1, new = old}

(*)

(after widening)true

(a) (b) (c)

subsumed

subsumed

lock=0, new=old+1

lock=1, new=old

1

2

3

5

0

1

(new != old)

{lock = 1, new = old}

4

5

6

7

(new == old)

{new = old}

(lock == 0)

ERROR is reachable!

(*) (*)

true (after widening)

5

8

lock=0, new=old+1

lock=1, new=old

1

2

3

0

(new != old)

false 6

(new == old)

(lock == 0)

false

(lock != 0)

(new != old)

1
B

A {lock=0, new=old+1}

{lock=1, new=old}

(*)

(widening failed!)

subsumed

5

4

5

8

lock=0, new=old+1

lock=1, new=old

1

2

3

lock=0, new++

0

(new != old)
{lock=1, new=old}

false 6

(new == old)

(lock == 0)

false

(lock != 0)

{lock=0, new=old+1}

false

(new != old) (new == old)

1 1B

A

C

{lock=0, new=old+1}

(*) (*)

(d) (e) (f)

Fig. 4. TRACER execution for an excerpt from a NT Windows driver

constraint versions before and after the execution of the cycle corresponding to one
candidate. Then, widening our loop candidates (shown between curly brackets in the
first occurrence of location1) {lock0 = 0, new0 = old0 + 1} produces an abstracted
symbolic statetrue ((lock0 = 0) ∇ (lock1 = 1) ≡ true and (new0 = old0 +
1) ∇ (old1 = new0) ≡ true). The pathπ1 after widening is shown in Fig. 4(c). Note
that the symbolic state at the loop header istrue, and as a result, we can stop executing
and avoid unrolling the pathπ1 forever since the child (second occurrence of location
1) is subsumed by its parent (first occurrence of1). We then backtrack to a second
pathπ2 from executing thethen branch. Forπ2, the candidates are indeed invariants
but this is irrelevant since the execution ofπ1 already determined that they were not
invariant. As a result of the loss of precision of our abstraction, the exit condition of
the loop(new0 = old0) (Fig. 4(d)) is now satisfied and the error location is reachable
by the pathπ3 ≡ (new0 = old0) ∧ (lock0 = 0). Then, a refinement is triggered.
First, we check thatπ3 is indeed spurious due to the loop abstraction (i.e.,lock0 =
0 ∧ new0 = old0 + 1 ∧ (new0 = old0) ∧ (lock0 = 0) is unsatisfiable). Second, by
weakest preconditions we infer an interpolantI ≡ new0 6= old0 that suffices to rule
out the counterexample. Third, we strengthen our loop abstractiontrue with I, record
thatI cannot be abstracted further, and restart.



After restart, the execution ofπ1 shown in Fig. 4(e) cannot be halted at location
labelled withB since(new0 = old0 + 1) ∇ (old1 = new0) is still true but this
abstraction does not preservenew0 6= old0, the interpolant from the refinement phase.
As a result, we are not allowed to abstract the candidatenew0 = old0 +1 at locationA
and thus the path must be unrolled one more iteration. However, the unrolled path will
not take the loop body anymore but follow the exit condition propagating the constraints
lock1 = 1∧new1 = old0. Hence, the unrolled path is safe. Finally, we exploreπ2 from
thethen branch shown in Fig. 4(f). Fortunately, we can stop safely the execution of
π2 (as before) since no abstraction is needed for this path and hence,new0 6= old0 is
preserved. As a result, the state of the childC is subsumed by its ancestorA. ⊓⊔

Remarks. It is known that wp may fail to generalize with some loops as Jhala et al.
pointed out in [14].TRACER can be fed with other interpolation methods and/or with
inductive invariants from external tools (see Sec. 3). Also, our path invariant technique
via widening is closely related to the widening ”up to”S (∇S) used in [9], whereS con-
tains the constraints inferred by the refinement phase. However, they use it to enhance
CEGAR while SE poses different challenges (see [12] Sec.1, Ex.3). Finally, we would
like to emphasize that abstraction inTRACER differs from CEGAR in a fundamental
way. TRACER attempts at inferring thestrongestloop invariants modulo the limitations
of widening techniques whileCEGAR, as well as hybrid tools likeCPA-CHECKER and
KRATOS, will often propagate coarser abstractions. Although stronger abstractions may
be more expensive they may converge faster in presence of loops (see [12] Sec.1, Ex.4).

3 Usage and Implementation

Loop Inv. Gen

Error

Safe Refinement
Loop Inv.

Abstract
Error

C program

SE Interpreter

C frontend

Alias Analysis

InterProc

Interpolation

Constraint Solving

Interpreter

Frontend

Fig. 5. Implementation ofTRACER

Input . TRACER takes as input a C pro-
gram with assertions of the formTRACER abort(Cond),
whereCond is a quantifier-free FOL formula.
Then, each path that encounters the assertion
tests whetherCond holds or not. If yes, the
symbolic execution has reached an error node
and thus, it reports the error and aborts if the
error is real, or refines if spurious. Otherwise,
the symbolic execution continues normally.

Output. If the symbolic execution terminates
and all TRACER abort assertions failed then
the program is reported as safe and the corre-
sponding symbolic execution tree is displayed

as the proof object. If the program is unsafe then a counterexample is shown.

Implementation. Fig. 5 outlines the implementation ofTRACER. It is divided into
two components. First, a C-frontend based onCIL [19] translates the program into a
constraint-based logic program. Both pointers and arrays are modeled using the theory
of arrays. An alias analysis is used in order to yield sound and finer grained indepen-
dent partitions (i.e.,separation) as well as infer which scalars’ addresses may have been
taken. Optionally, INTERPROC [16] (option-loop-inv) can be used to provide loop
invariants. The second component is an interpreter which symbolically executes the



constraint-based logic program and it aims at demonstrating that error locations are un-
reachable. This interpreter is implemented in aConstraint Logic Programming(CLP)
system called CLP(R) [11]. Its main sub-components are:

• Constraint Solvingrelies on the CLP(R) solver to reason fast over linear arithmetic
over reals augmented with a decision procedure for arrays (option-mccarthy).

• Interpolation implements two methods with different logical strength. The first
method usesstrongest postconditions[12, 13] (-intp sp). The second computes
weakest preconditions(-intp wp) but currently it only supports linear arithmetic
over reals.TRACER also provides interfaces to other interpolation methods such as
CLP-PROVER(-intp clp).

• Loop Invariant Refinement. Similar to CEGAR the effectiveness of the refinement
phase usually relies on heuristics (-h option). But unlikeCEGAR tools, SE only
performs abstractions at loop headers. Thus, given a path that reaches an error lo-
cationTRACER only needs to visit those abstraction points in the path and check if
one of the them caused the reachability of the error. If yes, it uses interpolation to
choose which constraints can rule out the error. Otherwise,the error must be real.

• Loop Invariant Generation. If a loop header is foundTRACER records a set ofloop
invariant candidates by projecting onto the propagated symbolic state. When a cy-
cleπ is found it widens the state at the header byc∇c′ wherec′ is the candidatec
after the execution ofπ. Current implementation of widening isc∇c′ , c if c′ |= c
otherwisetrue. Very importantly, if∇ attempts at abstracting a constraint needed to
exclude an error then it fails and the path is unrolled at least one more iteration. Al-
though our experiments show that our method for discoveringloop invariants is fast
and effective, it isincomplete(in the sense that it may cause non-termination) for
several reasons. First, the generation of candidates considers only constraints prop-
agated bySE althoughTRACER allows enriching this set with inductive invariants
provided by INTERPROC. Second, the implementation of∇ is fairly naive. Third,
∇ is applied to each candidateindividually. By applying∇ to all candidate subsets
we could produce richer invariants, although this process would be exponential.

4 Experience with Benchmarks

We ran TRACER on thentdrivers-simplified and ssh-simplified benchmarks fromSV-
COMP(sv-comp.sosy-lab.org) and compare with two state-of-the-art tools:CPA-CHECKER[3]
and HSF [21]. Fig. 6 shows the results of this comparison including the impact on
TRACER using strongest postconditions (SP) and weakest preconditions (WP) as in-
terpolants. Columns 2 and 3 compare the number of states of the symbolic execution
tree (#S) explored byTRACER usingSP andWP, and columns 4 and 5 compare the
number of loop invariant refinements made (#R) using SP and WP. The rest of the
columns show total time in secondsT (including compilation time) ofTRACER (SP and
WP), CPA-CHECKER(CPA), andHSF(HSF). For a fair comparison,TRACERdid not use
invariants from INTERPROC. ∞ indicatesTRACER did not finish within900 seconds.

Our results indicate that the use ofWP pays off with greater gains in programs where
TRACER refines heavily, mainly because loop unrolls are expensive for SE, and hence
subsuming more often is vital. Forssh-simplified benchmarks (s3 clnt and s3 srvr)
TRACER, with SP, was unable to finish for all but one program, where#S, #R andT



#S #R T
Program SP WP SP WP SP WP CPA HSF
cdaudio 4663 2138 0 0 12 10 3 529

diskperf 4565 2829 0 0 14 11 3 513

floppy 1758 1357 0 0 4 4 2 568

kbfiltr 319 230 0 0 2 2 2 5

s3 clnt 1 ∞ 6940 ∞ 33 ∞ 61 7 8

s3 clnt 2 ∞ 9871 ∞ 74 ∞ 115 12 5

s3 clnt 3 ∞ 17617 ∞ 114 ∞ 338 8 9

s3 clnt 4 ∞ 6990 ∞ 46 ∞ 80 5 8

s3 srvr 1 ∞ 5496 ∞ 12 ∞ 33 18 5

s3 srvr 2 ∞ 7295 ∞ 29 ∞ 120 98 11

s3 srvr 3 ∞ 5950 ∞ 14 ∞ 37 13 39

s3 srvr 4 47988 4349 143 12 372 27 25 10

Fig. 6. Comparison betweenTRACER and state-of-the-art verifiers on Intel 2.33Ghz 3.2GB.

were about 10-15 times more compared toWP. Compared withHSF, a “pure” CEGAR

verifier, TRACER out-performed it in thentdrivers-simplified benchmarks (first 4 rows)
and was out-performed in the rest. This suggests thatCEGAR may behave better when
numerous loop unrolls are needed andSEmay be more suitable when most of the infea-
sible paths affect safety (whereCEGAR would perform many refinements). Comparing
with CPA, a hybrid verifier and winner ofSV-COMP’12, TRACER fares almost equally
in thentdrivers-simplified benchmarks ands3 srvr programs, but is out-performed in the
s3 clnt benchmarks. Nevertheless, our evaluation demonstrates that TRACER is compet-
itive with state-of-the-art verifiers.

References

1. T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM. InIFM’2004.
2. T. Ball et al. Relative Completeness of Abstraction Refinement for Software Model CheckingTACAS’02.
3. D. Beyer et al. Software Model Checking via Large-Block Encoding. In FMCAD’09.
4. D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. BLAST.Int. J. STTT, 2007.
5. A. Cimatti et al. Kratos - A Software Model Checker for SystemC. InCAV’11.
6. A. Cimatti et al. Efficient Interpolant Generation in SMT. InTACAS’08.
7. E. Clarke et al. Satabs: Sat-based Predicate Abstraction for Ansi-C.In TACAS’05.
8. W. Craig. Three Uses of Herbrand-Gentzen Theorem in Relating Model and Proof Theory.JSC’55.
9. B. S. Gulavani et al. Refining Abstract Interpretations.Inf. Process. Lett., 2010.

10. F. Ivancic et al. F-Soft: Software Verification Platform. InCAV’05.
11. J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) System.TOPLAS, 1992.
12. J. Jaffar, J.A. Navas, and A. E. Santosa. Unbounded SymbolicExecution for Program Veri-

fication. InRV’11.
13. J. Jaffar, A. E. Santosa, and R. Voicu. An Interpolation Method for CLP Traversal. In CP’09.
14. R. Jhala et al. A Practical and Complete Approach to Predicate Refinement. InTACAS’06.
15. J . King. Symbolic Execution and Program Testing.Com. ACM’ 76.
16. G. Lalire, M. Argoud, and B. Jeannet. The Interproc Analyzerhttp://pop-

art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc.
17. K. L. McMillan. An Interpolating Theorem Prover.TCS, 2005.
18. K. L. McMillan. Lazy Annotation for Program Testing and Verification.In CAV’10.
19. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL. InCC’02.
20. A.V. Nori, S.K. Rajamani, S. Tetali, A.V. Thakur. The Yogi Project. In TACAS’09.
21. S.Grebenshchikov et.al. Synthesizing Software Verifiers from Proof Rules. InPLDI’12.
22. A. Rybalchenko and V. Sofronie. Constraint Solving for Interpolation. In VMCAI’07.


