TRACER: A Symbolic Execution Tool for Verification *

Joxan Jaffdr, Vijayaraghavan Murali, Jorge A. Navas and Andrew E. Santo3a

!National University of Singapore
2The University of Melbourne
3University of Sydney

Abstract. We presentrRACER, a verifier for safety properties of sequential C
programs. It is based on symbolic executi@®E)(and its unique features are in
how it makesske finite in presence of unbounded loops and its use of interpolants
from infeasible paths to tackle tlpath-explosiorproblem.

1 Introduction

Recentlysymbolic executiors) [15] has been successfully proven to be an alternative
to CEGAR for program verification offering the following benefits angpothers [12,
18]: (1) it does not explore infeasible paths avoiding egpenrefinements, (2) it avoids
expensiveredicate imageomputations (e.gCartesianandBooleanabstractions [2]),
and (3) it can recover fronoo-specificabstractions as opposed to monotonic refine-
ment schemes often used. Unfortunately, it poses its owiteciges: (C1) exponential
number of paths, and (C2) infinite-length paths in presefcalbounded loops.

We presentrRACER, a SE-based verification tool fofinite-statesafety properties
of sequential C programs. InformallyRACER attempts at building a finite symbolic
execution tree which overapproximates the set of all cdaaeachable states. If the
error location cannot be reached from any symbolic path themprogram is reported
as safe. Otherwise, either the program may contain a bugneaytnot terminate. The
most innovative features aRACER stem from how it tackles (C1) and (C2).

In this paper, we describe the main ideas befrRgdcER and its implementation as
well as our experience in running real benchmarks.

1.1 State-Of-The-Art Interpolation-Based Verification Tools

Fig. 1 depicts one possible view of current veri-
Stronge R impacT I fication tools based on two dimensioraziness
HSFIARME RAT and interpolation strengthLazy means that the
SLAM tool starts from a coarsely abstracted model and
Weaker| FSOFT YOGI then refines it whileageris its dual, starting with
SATABS the concrete model and then removing irrelevant
facts. CEGAR-based tools [1,4,7, 10, 21] are the
) . best examples of lazy approaches wisikebased
Fig. 1. State-of-the-art verifiers 115112 18] are for eager methods. Special men-
tion is required for hybrid approaches suchyasG! [20], CPA-CHECKER [3], and
KRATOS [5]. YOGI computes weakest preconditions from symbolic executiguattfis

Lazy Eager

*This paper extends the ideas published in [12, 13] by describing a mé&h@edmputing
weakest preconditions as interpolants as well as a detailed descriptiom axfcthitecture of the
tool and a new experimental evaluation.

as a cheap refinement foEGAR. One disadvantage is that it cannot recover from too-
specific refinements (see progratiamondin [18]). CPA-CHECKER and KRATOS en-
code loop-free blocks into Boolean formulas that are théfested to arsMT solver in
order to exploit its (learning) capabilities and avoid refirents due to coarser abstrac-
tions often used ICEGAR. On the other hand, the performance of interpolation-based
verifiers depends on the logical strength of the interpstait lazy approaches, a weak
interpolant may contain spurious errors and cause refinentea often. Stronger in-
terpolants may delay convergence to a fixed point. In eagenoaphes, weaker inter-
polants may be better (e.qg., for loop-free fragments) thramger ones since they allow
removing more irrelevant facts from the concrete model.

TRACER performsse computing efficient approximateseakest preconditionas
interpolants. To the best of our knowledgeAcEeRis the first publicly availablep@ael | a.
d1. conp. nus. edu. sg/ t r acer) verifier with these characteristics.

2 How TRACER Works

Essentially, TRACER implements classical symbolic execution [15] with somee&iov
features that we will outline along this section. It takesbylic inputs rather than
actual data and executes the program considering thoseo$ignmputs. During the ex-
ecution of a path all its constraints are accumulated in &dider logic (FOL) formula
calledpath condition (PC)Whenever code of the forif(C) then Slelse S2 is reached
the execution forks the current symbolic state and updai#s gonditions along both
the pathsPC; = PCAC andPCy; = PC A— C. Then, it checks if eithePC; or PCy

is unsatisfiable. If yes, then the pathrifeasibleand the execution halts backtracking to
the last choice point. Otherwise, it follows the path. Thefietion problem consists of
building afinite symbolic execution tree that overapproximates all coecretichable
states and proving for every symbolic path the error locaiBaunreachable.

The first key aspect of RACER, originally proposed in [13] for symbolic execu-
tion, is the avoidance of full enumeration of symbolic pdilisearningfrom infeasible
paths computingnterpolants[8]. Preliminary versions of RACER [12, 13] computed
interpolants based ostrongest postconditions (spkiven two formulasA (symbolic
path) andB (last guard where infeasibility is detected) such tHat B is unsat, an
interpolant was obtained 3 - A wherez are A-local variables (i.e., variables occur-
ring only in A). However, unlikeCEGAR, TRACER starts from the concrete model of the
program and then deletes irrelevant facts. Therefore, #eker the interpolant is the
more likely it is forTRACERto avoid exploring other “similar” symbolic paths. This is
the motivation behind an interpolation method base#veakest preconditions (wp)

Example 1.The verification of the contrived program in Fig. 2(a) illketes the need
for wp as well as the essence of our approach to mitigate thth“gxplosion” problem.
Fig. 2(b) shows the first symbolic path exploredt®ACER which is infeasible(*)
means that the evaluation of the guard carrbe or false After renaming we obtain
the unsatisfiable constraintg = 0 A s;1 = sg + 1 A so = s1 + 1 A so > 10. State-
of-the-art interpolation techniques will annotate evergation with its corresponding

1Given formulasA and B such thatd A B is unsatisfiable, &raig interpolant[8] I satisfies:
(1) A E 1, (2)I A Bis unsatisfiable, and (3) its variables are commod tand B. We say an
interpolant! is stronger (weaker) thaH if I = I' (I’ = I).

s+=2;
if(s> 10)
error();

G (b) (© (d)

Fig. 2. Symbolic Trees with Strongest Postconditions£apP-PROVER(runningTRACER 0N pro-
gram in Fig. 2(a) with optionsi ntp spor-intp clp)

(b)

Fig. 3. Symbolic Trees with Weakest Preconditions (runmmgCERwith - i nt p wp)

interpolantit; : sg < 0,69 :80 < 0,04 :8 <1,15:8 <1,ande; : so < 2 where

1, refers to the interpolant at locatidn In all figures, interpolants are enclosed in (red)
boxes. Fig. 2(c) shows the tree after the second symbollt lped been explored. At
location7 of the second pathRACERtests if the current symbolic state = 0 A s; =

so + 1A sy = 51 + 2is subsumetlby ¢ : s, < 2, the interpolant af. However, this
tests fails sinceg = 0 A s; = sg+ 1 A sg = s1 + 2 £ so < 2. Similarly, TRACER
attempts again at locatichof the third path in Fig. 2(d) if the new symbolic path can
be subsumed by a previous explored path. Here, it tesgsif 0 A s; = so + 2 implies

1y : s1 < 1 but again it failsTRACER can prove the program is safe but the symbolic
execution tree built is exponential on the number of progbaamches. O

For efficiency, TRACER under-approximates the weakest precondition by a mix of
existential quantifier elimination, unsatisfiable corasl dome heuristics. Whenever
an infeasible path is detected we computély -), thepostconditiorthat we want to
map into gprecondition wheredG is the guard where the infeasibility is detected gnd
areG-local variables. The two main rules for propagating wpks. ar

2A symbolic stater is subsumedr coveredby another symbolic stat€ if they refer to same
location and the set of states represented Isya subset of those representedbyAlternatively,
if o ando’ are seen as formulas theris subsumed by’ if o |= 0.

(A) wp(z :=e, Q) = Qle/z]
(B) wp(if(C) S1 else S2,Q) = (C = wp(S1,Q)) A (= C = wp(S52,Q))

Rule (A) replaces all occurrences:ofvith e in the formula@. The challenge is how to
produce efficient (conjunctive) formulas from rule (B) asakas possible to increase
the likelihood of subsumption. During the forwas& when an infeasible path is de-
tected we discariirelevantguards by using the conceptuwrfisatisfiable cores (U€Yo
avoid growing the wp formula unnecessarily. For instarteeformulaC’ = wp(S1, Q)
can be replaced withvp(S1, Q) if C' ¢ C whereC is a (not necessarily minimal) UC.
Otherwise, we underapproximate = wp(S1,Q) as follows. Letd; V ...V d, be
- wp(S1, Q) then we computg\, ... (= (32’ - (C A d;))), where existential quan-
tifier elimination removes the post-state variablésA very effective heuristic if the
resulting formula is disjunctive is to delete those conjartbat are not implied bg¢
because they are more likely to be irrelevant to the infé#gibeason.

Example 2.Coming back to the program in Fig 2(a). Fig. 3(a) shows theesfirat
symbolic path explored byRACER but annotated with weakest preconditions: :

S0 < 8,10 :8) < 8,14 :81 <9,15: 81 <9,ander : so < 10. In this example, the
wp computations are notably simplified since the guards lealy irrelevant for the
infeasibility of the path, and hence, only rule (A) is triggé. For instance; : s; < 10

is obtained by (FV \ {s2} - s2 > 10) = s2 < 10 whereV is the set of all program
variables (including renamed variables), agd s; < 9is obtained bywp(ss = s1 +1,

sy < 10) =51 < 9. Fig. 3(b) shows the second symbolic path but note that tktie pa
can be now subsumed at locatidrsince the symbolic stat¢) = 0 A s; = sg+ 1A

s2 = s1 + 2 E s2 < 10. Dashed edges represent subsumed paths and are labelled
with “subsumed”. Finally, Fig. 3(c) illustrates how therthsymbolic path can be also
subsumed at locatiofisinces, = 0 A s; = 5o + 2 = s1 < 9. TRACER proves safety
again but the size of the symbolic tree is now linear on thelremof branches. O

With unbounded loops the only hope to produce a proabstraction In a nutshell,
upon encountering a cycleRACER computes thetrongestpossible loop invariant®
by using widening techniques in order to make $tadinite. If a spurious abstract error
is found then aefinement phas@imilar toCEGAR) discovers an interpolatdtthat rules
the spurious error out. After restarR ACER strengthen’ by conjoining it with/ and
the symbolic execution checkmth by pathif the new strengthened formula is loop
invariant. If this test fails for a path, thenTRACER unrolls = one more iteration and
continues with the process. Notice that the generationwariants isdynamicin the
sense that loop unrolls will expose new constraints pradyoew invariant candidates.
For lack of space, we refer readers to [12] for technicalitbetdere, we illustrate how
TRACER handles unbounded loops through the classical exampleibleddn Fig 4(a).

Example 3. TRACER executes the program until a cycle is found and checks whethe
a certain set of loop candidates holds after the executicheotycle. We obtain the
symbolic pathm; = lockg = 0 A newy = oldy + 1 A (newg # oldy) A lock; =

1 A old; = newy from executing theel se branch, shown in Fig. 4(b). Assume a
wideningV defined as: V ¢/ £ cif ¢ = c otherwisetrue, wherec and¢’ are the

3Given a constraint sef whose conjunction is unsatisfiable, amsatisfiable core (UCY’ is
any unsatisfiable subset 6f An UC S’ is minimalif any strict subset of’ is satisfiable.

<O> lock=0; new=old+1; lock=0, new=old+1 lock=0, new=old+1
. ! ! ’ - Zold+1y emmmmmee > 2 ideni
<1> whi | e(ﬂeW7é Old) { (new]:old)‘/\l) {lock =0, new = old+1} o = old)_ 1) true (after widening)
(2) lock=1; old=new;
<3> |f(*) lock=1, new=old ," lock=1, new=old
(4) lock=0;new++; ® ; o
<5> } subsumed
(6) if(lock == 0) 1
(7y error();
(®) © v ©
\’1) {lock =1, new = old} ~..\\,1) {lock = 1, new = old}
@ (b) (c)
@ lock=0, new=old+1 ? lock=0, new=old+1 ?
a ¥ {lock=0, new=old+1} a 4 {lock=0, new=old+1}
lock=0, "9WZ°|di L (new 1=old) _x 1) (widening failed!) (new!=old) _x 1){mew-:\: old)
Lammmmme . true (after widening) false o~
L*(new 1= old L (new == old) N
R (rewt=od) lock=1, new=old lock=1, new=old N
B e {new = old} N

(lock == 0) o) P ON: subshmed

,'l lock=1, new=old

1
; S « ©, ock=0, new++ |
subsumed ERROR is reachable!)
- ®, <i) .
L’
kY subsumed 58 _ _ s~ B -~ E:, =old+:
. e y1)° {lock=1,new=old} {iock=1, new=old} 1) \ 1 j1ock=0, new=old+1}
. - (new != old) / '\ (new == old) (new 1= old) / ~\\ (new == old)
false false
. 0 0
{1) {lock =1, new = old) (lock == 0) (lock = 0) (lock == 0) (lock 1= 0)
- rase (o) rase (o)
(d) (e))

Fig. 4. TRACER execution for an excerpt from a NT Windows driver

constraint versions before and after the execution of tlebecgorresponding to one
candidate. Then, widening our loop candidates (shown lmtwerly brackets in the
first occurrence of locatiof) {locky = 0, newy = oldy + 1} produces an abstracted
symbolic statetrue ((locky = 0) V (locky = 1) = true and (newy = oldy +

1) V (old; = newy) = true). The pathr; after widening is shown in Fig. 4(c). Note
that the symbolic state at the loop headdrug, and as a result, we can stop executing
and avoid unrolling the path, forever since the child (second occurrence of location
1) is subsumed by its parent (first occurrencel pf We then backtrack to a second
pathm, from executing thé hen branch. Forry, the candidates are indeed invariants
but this is irrelevant since the executionof already determined that they were not
invariant. As a result of the loss of precision of our abgtcex; the exit condition of
the loop(newy = oldy) (Fig. 4(d)) is now satisfied and the error location is reatdab
by the pathrs = (newg = oldy) A (lockg = 0). Then, a refinement is triggered.
First, we check thatr; is indeed spurious due to the loop abstraction (le:k, =

0 A newy = oldg + 1 A (newp = oldy) A (lockyg = 0) is unsatisfiable). Second, by
weakest preconditions we infer an interpoldnt newy # old, that suffices to rule
out the counterexample. Third, we strengthen our loop attntrue with I, record
thatI cannot be abstracted further, and restart.

After restart, the execution of; shown in Fig. 4(e) cannot be halted at location
labelled with B since (newg = oldy + 1) V (old; = newy) is still true but this
abstraction does not presemew, # oldy, the interpolant from the refinement phase.
As aresult, we are not allowed to abstract the candidat®, = oldy + 1 at locationA
and thus the path must be unrolled one more iteration. Hawthe unrolled path will
not take the loop body anymore but follow the exit conditioogagating the constraints
lock; = 1 Anewy = oldy. Hence, the unrolled path is safe. Finally, we explorérom
thet hen branch shown in Fig. 4(f). Fortunately, we can stop safetyekecution of
7o (as before) since no abstraction is needed for this path andenewy # oldy is
preserved. As a result, the state of the cliilis subsumed by its ancestdr O

Remarks. It is known that wp may fail to generalize with some loops laald et al.
pointed out in [14].TRACER can be fed with other interpolation methods and/or with
inductive invariants from external tools (see Sec. 3). Atag path invariant technique
via widening is closely related to the widening "up 8 V) used in [9], whereS con-
tains the constraints inferred by the refinement phase. Menvthey use it to enhance
CEGAR while St poses different challenges (see [12] Sec.1, Ex.3). Finakywould
like to emphasize that abstraction TRACER differs from CEGAR in a fundamental
way. TRACER attempts at inferring thstrongestoop invariants modulo the limitations
of widening techniques whileEGAR, as well as hybrid tools likerPA-CHECKER and
KRATOS, will often propagate coarser abstractions. Althoughreges abstractions may
be more expensive they may converge faster in presenceps (see [12] Sec.1, Ex.4).

3 Usage and Implementation

Frontend
Alias Analysis

Input. TRACER takes as input a C pro-

gram with assertions of the formMRACER _abort(Cond),

whereCondis a quantifier-free FOL formula.

Then, each path that encounters the assertion
tests whetheiCond holds or not. If yes, the

777777777777777 symbolic execution has reached an error node

merae Ausrac and thus, it reports the error and aborts if the
Safe SE Interpreter T’ | error is real, or refines if spurious. Otherwise,
the symbolic execution continues normally.

Consiraint Solving Output. If the symbolic execution terminates

and all _TRACER _abort assertions failed then

]] the program is reported as safe and the corre-
Fig. 5.Implementation of RACER gponding symbolic execution tree is displayed

as the proof object. If the program is unsafe then a courdengie is shown.

Implementation. Fig. 5 outlines the implementation aiRACER. It is divided into

two components. First, a C-frontend basedmn [19] translates the program into a
constraint-based logic program. Both pointers and arreg/srdeled using the theory

of arrays. An alias analysis is used in order to yield sourdifarer grained indepen-
dent partitions (i.e separation as well as infer which scalars’ addresses may have been
taken. Optionally, N\TERPROC[16] (option- | oop-i nv) can be used to provide loop
invariants. The second component is an interpreter whichbsyically executes the

Loop Inv. Gen

Interpolation

constraint-based logic program and it aims at demonsty#tiat error locations are un-
reachable. This interpreter is implemented i@@nstraint Logic ProgrammingCLP)
system called CLFR) [11]. Its main sub-components are:

e Constraint Solvingelies on the CLPR) solver to reason fast over linear arithmetic
over reals augmented with a decision procedure for arrgyt#fo- nccar t hy).

e Interpolationimplements two methods with different logical strengtheThrst
method usestrongest postconditiojd2,13] ¢ i nt p sp). The second computes
weakest preconditior(si nt p wp) but currently it only supports linear arithmetic
over realsTRACER also provides interfaces to other interpolation methodé si$
CLP-PROVER(-i ntp cl p).

e Loop Invariant RefinemenSimilar to CEGAR the effectiveness of the refinement
phase usually relies on heuristicsh(option). But unlikeCEGAR tools, SE only
performs abstractions at loop headers. Thus, given a pathi¢hches an error lo-
cationTRACER only needs to visit those abstraction points in the path &uedlcif
one of the them caused the reachability of the error. If ytasses interpolation to
choose which constraints can rule out the error. Otherwhsegrror must be real.

e Loop Invariant Generationlf a loop header is fountIRACERrecords a set dbop
invariant candidates by projecting onto the propagated symbolie stéhen a cy-
cle w is found it widens the state at the headercBi’ wherec’ is the candidate
after the execution of. Current implementation of wideningi&/¢’ £ cif ¢/ = ¢
otherwisetrue. Very importantly, ifV attempts at abstracting a constraint needed to
exclude an error then it fails and the path is unrolled atleas more iteration. Al-
though our experiments show that our method for discovdoiog invariants is fast
and effective, it isncomplete(in the sense that it may cause non-termination) for
several reasons. First, the generation of candidatesdemsginly constraints prop-
agated byse althoughTRACER allows enriching this set with inductive invariants
provided by NTERPROC. Second, the implementation ®f is fairly naive. Third,

V is applied to each candidatalividually. By applyingV to all candidate subsets
we could produce richer invariants, although this processlavbe exponential.

4 Experience with Benchmarks

We ran TRACER on the ntdrivers-simplified and ssh-simplified benchmarks fromsv-
COMP (sv-comp.sosy-lab.org) and compare with two state-of-the-art toa®A-CHECKER[3]
and HsF [21]. Fig. 6 shows the results of this comparison includihg tmpact on
TRACER using strongest postconditionSK) and weakest preconditiongvp) as in-
terpolants. Columns 2 and 3 compare the number of statee dytinbolic execution
tree ¢S) explored byTRACER usingSP andWP, and columns 4 and 5 compare the
number of loop invariant refinements madiR) using SP and WP. The rest of the
columns show total time in secondgincluding compilation time) of RACER (SP and
WP), CPA-CHECKER(CPA), andHSF (HSF). For a fair comparisomRACERdid not use
invariants from NTERPROC. oo indicatesTRACER did not finish within900 seconds.
Our results indicate that the usevsP pays off with greater gains in programs where
TRACER refines heavily, mainly because loop unrolls are expensived, and hence
subsuming more often is vital. Fash-simplified benchmarks §3_cint and s3_srvr)
TRACER, with SP, was unable to finish for all but one program, whég #R andT

#S #R T
Program|| SP | WP |SP|WP|SP |WP|CPAHSF
cdaudio || 46632138 | 0 | 0 [12]10 3 |529
diskperf || 4565|2829 | 0 | 0 |14 |11 3 |513
floppy 1758|1357 0| 0 | 4 | 4 2 | 568
kbfiltr 319 | 230 | O | O | 2|2 2 5
s3.cint1f| oo [6940 | o0 |33 |00 |61 7 8
s3cInt2|| oo [9871 | oo | T4 |00 [115] 12 | 5
s3cInt_.3|| oo [17617| co |114| oo (338 8 9
s3.cint4| oo [6990 | oo |46 |00 |80 5 8
s3.srvrlil oo [5496 |00 |12 00|33 18 | 5
s3.srvr2|| oo [7295 |00 |29 | 0o 120 98 | 11
s3.srvr 3|l oo [5950 | oo |14 |00 |37 13 | 39
s3_srvr_4(|47988| 4349 (143| 12 |372| 27 || 25 | 10

Fig. 6. Comparison betweerRACER and state-of-the-art verifiers on Intel 2.33Ghz 3.2GB.

were about 10-15 times more compareduB. Compared wittHSF, a “pure” CEGAR

ve

rifier, TRACER out-performed it in thentdrivers-simplified benchmarks (first 4 rows)

and was out-performed in the rest. This suggestsaB&AR may behave better when
numerous loop unrolls are needed ammay be more suitable when most of the infea-
sible paths affect safety (whec=GAR would perform many refinements). Comparing
with CPA, a hybrid verifier and winner a§v-COMP'12, TRACER fares almost equally

in
s3

thentdrivers-simplified benchmarks ansB_srvr programs, but is out-performed in the

_cInt benchmarks. Nevertheless, our evaluation demonstratesRRCERis compet-

itive with state-of-the-art verifiers.

References

©CONOUTAWNE

e e
N RO

el
ouUlh W

17.
18.
19.
20.
21.

22

. T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM. IRM’'2004.

. T.Balletal. Relative Completeness of Abstraction Refinement fiiw&oe Model CheckinACAS’02

. D. Beyer et al. Software Model Checking via Large-Block Encoding-MCAD'09.

D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. BLABIL. J. STTT2007.

A. Cimatti et al. Kratos - A Software Model Checker for SystemCCAV'11

. A. Cimatti et al. Efficient Interpolant Generation in SMT.TACAS’08

. E. Clarke et al. Satabs: Sat-based Predicate Abstraction for AlSiTBCAS’05

. W. Craig. Three Uses of Herbrand-Gentzen Theorem in RelatingeModi Proof TheornyldSC'55

. B. S. Gulavani et al. Refining Abstract Interpretatioim$. Process. Letf.2010.

. F.Ivancic et al. F-Soft: Software Verification Platform.GAV’05

. J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The GUPRystem. TOPLAS 1992.

. J. Jaffar, J.A. Navas, and A. E. Santosa. Unbounded Syntbadicution for Program Veri-
fication. InRV'11

. J. Jaffar, A. E. Santosa, and R. Voicu. An Interpolation Metho&{d® Traversal. In CP’09.

. R. Jhala et al. A Practical and Complete Approach to Predicate RefineInTACAS’'06

. J. King. Symbolic Execution and Program Testi@gpm. ACM’ 76

. G. Lalire, M. Argoud, and B. Jeannet. The Interproc Analyzerhttp://pop-

art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc.

K. L. McMillan. An Interpolating Theorem Provef.CS 2005.

K. L. McMillan. Lazy Annotation for Program Testing and Verification.CAV’10.

G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIICQ02.

A.V. Nori, S.K. Rajamani, S. Tetali, A.V. Thakur. The Yogi Prdjeln TACAS’09

S.Grebenshchikov et.al. Synthesizing Software Verifiers fraoffRules. InPLDI'12.

. A. Rybalchenko and V. Sofronie. Constraint Solving for Interfiofa In VMCAI'07.

