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Abstract. A primary goal of static analysis based on abstract interpre-
tation is to infer invariants to verify programs. Memory safety checks
(e.g., proving the absence of out-of-bound accesses) require tracking lin-
ear relationships between pointer offsets and object sizes, such as 4*idx
+ 4 <= sz for accessing memory. Choosing the right abstract domain is
crucial, as each domain captures different kinds of properties. For exam-
ple, Zones and Octagons limit themselves to unit coefficients and cannot
express the invariants required for memory safety. On the other hand,
the Polyhedra domain can capture any linear relation but does not scale
in real applications. In this paper, as a compromise between expressive-
ness and efficiency while still covering our target properties, we intro-
duce Template DBM — a new weakly relational numerical domain for
expressing Two Variables per Inequality (TVPI) constraints with fixed
coefficients. Template DBM supports efficient join, inclusion, and satura-
tion. It strikes the balance of expressiveness and cost between Zones and
TVPI. We implemented Template DBM in the Crab library and evalu-
ated it against Zones and Polyhedra domains for memory safety analysis
of aws-c-common from AWS and firedancer from Solana. Our results
show that Template DBM maintains its intended level of precision, scales
comparably to Zones, and is significantly more efficient than Polyhedra.

Keywords: Static Analysis · Abstract Interpretation · Abstract Do-
mains · Bounds checking · Numerical Domains

1 Introduction

Numerical program analysis powers static analyzers for verification and code
optimization across real-world software systems. Although using a precise rela-
tional abstract domain ensures accuracy, scalability emerges as a critical chal-
lenge when code size grows. For example, Polyhedra [5] domain achieves great
precision by encoding arbitrary linear inequalities to capture highly precise pro-
gram invariants, but its operations incur worst-case time and space complexity
exponential in the number of variables, limiting performance. However, when
scalability is prioritized, some generality tends to be sacrificed. Existing weakly
relational numerical domains [16], such as [20,15,14], make their own sets of
restrictions.
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1 struct array_list {
2 int size; // allocated size
3 int len; // used length
4 int isz; // item size
5 void *data;
6 };
7

8 int get_at(const struct array_list *l,
void *val, int idx) {

9 if (l->len > idx) {
10 int ofs = l->isz * idx;
11 void *p = (uint8_t *)l->data + ofs;
12 assert(valid_access(p, l->isz));
13 assert(valid_access(val, l->isz));
14 memcpy(val, p, l->isz);
15 return 0;
16 }
17 return -1;
18 }

19 void main(int len, int idx) {
20 if (0 <= idx && idx < len) {
21 struct array_list l;
22 l.len = len;
23 l.isz = 4; // 4 bytes
24 l.size = l.isz * l.len;
25 l.data = malloc(l.size);
26

27 // Assume some code initializes l.data.
28

29 void *item = malloc(sizeof(l.isz));
30 int ret = get_at(&l, item, idx);
31 assert(ret == 0);
32 }
33 }

Fig. 1: An example C program.

The TVPI [20] (Two Variables Per Inequality) domain permits any linear
inequalities involving up to two variables. It operates in polynomial time, but
its inequality set per variable pair can still grow without bound due to arbitrary
coefficients. To bound the number of inequalities by the number of variables,
one way is to restrict coefficients to unit values, yielding the Unit Two Vari-
ables Per Inequality (UTVPI) domains: Zones [14] and Octagons [15] that offer
a compromise between precision and cost.

In many cases, program invariants demand more expressiveness than Zones
and Octagons provide, but not necessarily the full generality of TVPI. An ex-
ample in C is shown in Fig. 1. The program takes an array list that manages
an array with dynamic size but fixed item size (e.g., 4 bytes). Assuming the
list is full, copying an array element through function get_at requires comput-
ing an intermediate pointer p with offset idx * isz before access. Establishing
memory safety (e.g., proving the memory safety check valid_access at line 12
stays within buffer p) requires that the given domain automatically captures the
following invariants 3:

p.offset + 4 ≤ p.size ∧ p.offset = 4 ∗ idx ∧ p.size = l .size ∧
0 ≤ idx ∧ idx < l .len ∧ l .size = 4 ∗ l .len ∧ l .isz = 4

Neither Zones nor Octagons, which merely express Unit Two Variables Per In-
equality (UTVPI) constraints, can prove the check.

Although the generality of TVPI and Polyhedra is useful, it does not justify
the computational expense. In our experience, proving the memory safety in low-
level code requires reasoning about arrays that are traversed using a stride or a

3 We assume a pointer value with extra information [24]: offset is the position of the
referred object, size is the object size. For brevity, we write l.len to mean l->len

for field access.
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step. Often the size of the stride is the size of a memory word (4 or 8 bytes), or
the size of a specific structure stored in the array (i.e., a specific item_size). In
most cases, specializing the domain to deal with a few fixed coefficients, that are
heuristically identified from program source code, is sufficient. Restricting the
space of coefficients opens a new opportunity for designing an efficient domain
that matches Zones in scalability while adding the desired precision.

We aim to extend Zones to handle TVPI constraints while leaving the com-
plexity of the representation and operations intact. Specifically, we introduce
Template DBM, a new numerical abstract domain to express Two Variables Per
Inequality (TVPI) constraints with fixed coefficients. Each domain element re-
tains the form of constraints ax− by ≤ c, where x and y are program variables,
a, b are fixed integer coefficients, and c is a constant. For example, a property
constraint like p.offset = 4 ∗ idx, originally expressed by two TVPI inequal-
ities, is encoded in UTVPI form as ±(p.offset − 4 · idx) ≤ 0, where 4 · idx is
treated as a ghost variable [4] 4idx. Therefore, TVPI constraints in UTVPI form,
as used by Zones, can capture complex properties like array indexing. We fix the
coefficients for representation as a template, so the cost of each operation is
inherently bound by the number of variables and the size of the template.

In summary, Template DBM is more precise than Zones but less general than
TVPI, since it only supports a subset of TVPI constraints. To validate our con-
tributions, we built Template DBM in Crab [11] and evaluated it in terms of
scalability and precision. The evaluation results show that the performance of
Template DBM is comparable to that of Zones and the precision measured by
the number of memory safety checks validated is close to that of Polyhedra.

The paper is organized as follows. Section 2 covers necessary definitions and
operations of the Zones domain. Section 3 introduces a strategy for encoding
TVPI constraints in a difference bound matrix and provides algorithms for sat-
uration. Section 4 describes the core operations of Template DBM. Section 5
presents the implementation and experimental evaluation. Finally, Section 6 dis-
cusses related work.

2 Background

In this section, we discuss the necessary preliminaries for the Zones [14] domain,
including key definitions and important operations used in this paper.

Given a set of program variables V = {x, y, z, . . .} with N variables and a
set of integer numbers Z extended by infinity +∞, Zones supports representing
a UTVPI constraint system U over V of the form: {x − y ≤ c | x, y ∈ V ∧
c ∈ Z ∪ {+∞}}. The common data structure to encode UTVPI constraints
is a Difference Bound Matrix (DBM), where rows and columns correspond to
variables, and each entry represents an UTVPI constraint. For example, the
constraint x − y ≤ 3 is represented in a matrix m with mxy = 34. Typically,
DBM adds an auxiliary variable v0 that always takes the value 0 for ±x ≤ c. It

4 Our DBM notation differs slightly from that of [14]: we use x− y ≤ m̄x,y for conve-
nience.
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follows that the matrix dimensions are (N+1)×(N+1). For brevity, we suppose
the variables are integers5 and ignore describing constraints with infinite value
in the rest of the paper.

We assume readers know the abstract domain operations used for building
analysis. A DBM supports join ⊔DBM , meet ⊓DBM , and widening ▽DBM . It
also provides a DbmClosure (saturation) operation to derive all implicit con-
straints, ensuring that the DBM is closed. The idea is to propagate inequalities
through a transitive chain: given x− y ≤ a and y − z ≤ b, derive x− z ≤ a+ b.
The (full) closure operation runs in cubic time O(N3). For efficiency, we can
derive implicit constraints incrementally when a closed DBM adds a few new
constraints. IncrementalDbmClosure does this by updating the affected en-
tries in quadratic time O(N2). The full details of the core DBM operators can
be found in [14], and the incremental closure algorithm for Zones is summarized
in [2]. Additionally, we assume that the DBM also includes a transfer function
such as m ∪ {x− y ≤ c} to add or tighten a set of constraints only.

3 Template DBMs

In this section, we present a new DBM, tDBM (for template DBM), that extends
the classical DBM for representing TVPI constraints. For any TVPI constraint
ax − by ≤ c with non-unit coefficients (i.e., max{a, b} > 1), tDBM introduces
extra dimensions for variables with non-unit factors and storing c at the ax, by
entry. For example, tDBM associates a dimension for 4idx to capture a constraint
like 4 ∗ idx − y ≤ 0. These extra dimensions depend on a predefined coefficient
template T . We assume T = {a, b, . . .} with size |T | = K and always include 1
in T . As usual, we use v0 with value 0 for ±ax ≤ c.

tDBM falls between the system U and a TVPI constraint system I def
= {ax−

by ≤ c | x, y ∈ V ∧ a, b ∈ Z≥0 ∧ c ∈ Z} where a, b are positive coefficients.
Specifically, a tDBM represents a constraint system IT ⊂ I over variables V
and coefficients T of the form {ax− by ≤ c | x, y ∈ V ∧ a, b ∈ T ∧ c ∈ Z}.

Fig. 2 shows how a tDBM represents the TVPI constraints necessary to
guarantee that the memcpy (i.e., the assertion on line 12) access buffer p remains
within bounds. The given tDBM extends two extra dimensions for expressing
relations for 4idx and 4l.len. To improve readability, we decompose the tDBM
m̄ := (m,m+) into two submatrices: a classical sub-DBM, m, that covers dimen-
sions for UTVPI constraints x − y ≤ c, and an extended sub-DBM, m+, that
handles TVPI constraints with fixed non-unit coefficients ax− by ≤ c.

The constraint p.offset − p.size ≤ −4 (denoted as c) is needed to prove the
assertion on line 12 is valid. However, this constraint (and all constraints colored
in purple) is implicit and can only be inferred from the constraints colored in
green. Resolving c requires inferring c2 : p.offset − l .size ≤ −4, where c2 also
needs another constraint c3 : p.offset − 4l .len ≤ −4 to be implied. Section 3.1
shows how to compute those implicit constraints.

5 DBMs can also be defined over the rationals; however, in this paper, we focus on the
integer case exclusively.
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m :

−idx ≤ 0 −l.len ≤ −1

4 ≤ l.isz ≤ 4 idx− l.len≤ −1

p.size − l.size ≤ 0 l.size− p.size≤ 0

p.offset − p.size≤ −4 p.offset − l .size≤ −4

m+ :

p.offset − 4idx≤ 0 4idx− p.offset ≤ 0

4l.len− l.size≤ 0 p.offset − 4l.len≤ −4

l.size− 4l.len ≤ 0

(a)

m :

v0 l.isz l.len l.size idx p.offset p.size

v0 +∞ −4 −1 +∞ 0 +∞ +∞
l.isz 4 +∞ +∞ +∞ +∞ +∞ +∞
l.len +∞ +∞ +∞ +∞ +∞ +∞ +∞
l.size +∞ +∞ +∞ +∞ +∞ +∞ 0
idx +∞ +∞ −1 +∞ +∞ +∞ +∞

p.offset +∞ +∞ +∞ −4 +∞ +∞ −4
p.size +∞ +∞ +∞ 0 +∞ +∞ +∞

m+ :

p.offset 4idx 4l .len l .size

p.offset +∞ 0 −4 +∞
4idx 0 +∞ +∞ +∞
4l .len +∞ +∞ +∞ 0
l .size +∞ +∞ 0 +∞

(b)

Fig. 2: (a) DBM-related constraints and (b) a tDBM m̄.

For the rest of the paper, we use row(ax) and col(ax) to refer to the row and
column indexes, respectively, in the m̄ associated with variable x and coefficient
a. To access the item in m̄, we use m̄row(ax)col(by) or simply m̄ax,by to refer to
the difference bounds for inequality ax− by ≤ m̄ax,by. For elements represented
for UTVPI constraints, we write m̄x,y. For elements of other TVPI constraints,
we write m̄ax,by, m̄ax,y or m̄x,by. To access the difference bound for any TVPI
constraint l, we denote it as m̄l.

A single TVPI constraint can be represented in a variety of equivalent ways.
For example, 2x− y ≤ 3 is equivalent to 4x− 2y ≤ 6, 6x− 3y ≤ 9, etc. To keep
as many constraints as possible in tDBM, we normalize each TVPI constraint
ax − by ≤ c into a template expressible form so that its coefficients fit the
coefficient template T (if possible). This is justified by the following inference:

I ⊢ ax− by ≤ c d ∈ Z>1 (d | a) (d | b)
a′ = a/d a′ ∈ T b′ = b/d b′ ∈ T c′ = ⌈c/d⌉ c′ ∈ Z

IT ⊢ a′ · x− b′ · y ≤ c′
Scaling

The rule scales the coefficients by a common divisor d to produce an equivalent
inequality, where the new coefficients a′ and b′ are elements of T . For example,
for T = {1, 2, 3, 4}, the rule scales the constraint 8x − 4y ≤ 8 to 2x − y ≤ 2
(divided by 4). In practice, we keep just one equivalent form, as others like
4x− 2y ≤ 4 are ignored. The purpose of this rule is to convert TVPI constraints
into the expressible forms before matrix updates.



6 Y. Su et al.

Algorithm 1 Nelson-driven [18] tDBM saturation.

1: function NelsonTvpiSaturation(m̄)
2: for i ∈ {0, . . . , ⌈lg(N)⌉ − 1} do
3: for x, y, z ∈ V do
4: for a, b, d, e ∈ T do
5: c := m̄ax,by, f := m̄dy,ez

6: if a′x− b′z ≤ c′ = ScaledResultant(ax− by ≤ c, dy − ez ≤ f)
then

7: m̄ := m̄ ∪ {a′x− b′z ≤ c′}

3.1 Saturation

To achieve a full (closed) representation, we saturate tDBM by exhaustively
deriving all implicit constraints until a fixpoint is reached. We present a satura-
tion algorithm for tDBM based on Fourier-Motzkin variable elimination. Each
implicit inequality is deduced following this rule:

I ⊢ ax− by ≤ c I ⊢ dy − ez ≤ f g = gcd(b, d) λ1 = d/g λ2 = b/g

I ⊢ (λ1a) · x− (λ2e) · z ≤ λ1c+ λ2f
Resultant

which eliminates variable y and yields a new inequality. For instance, consider
the two TVPI constraints 2x− 3y ≤ 5 and 9y − 2z ≤ 5. Eliminating y through
the rule yields 6x− 2z ≤ 20. If this constraint cannot fit the coefficient template
(e.g., T = {1, 2, 3, 9}), we apply Scaling rule to rewrite it as 3x− z ≤ 10.

Algorithm 1 saturates an input tDBM by iteratively applying Resultant
to pairs of existing inequalities until the iteration limit ⌈lg(N)⌉ − 1 is reached.
We cap this bound since by then applying the Resultant guarantees a contra-
diction witness [18]. The Resultant is extended as ScaledResultant which
applies Scaling after to produce an expressible form. The time complexity is
O(K4N3lg(N)) when a matrix is dense.

Since the tDBM does not express arbitrary TVPI constraints, the algorithm
only introduces implicit inequalities within the available dimensions or tightens
the existing ones. A tDBM m̄ as complete if and only if, for every constraint
c over a variable set U that m̄ satisfies, the projection of m̄ (i.e., restricting
constraints) to U still satisfies c.

During the saturation process, however, Algorithm 1 cannot guarantee the
result tDBM is complete, since the derived constraints may not be expressible in
the tDBM. For example, for T = {1, 2, 3, 4}, a tDBM m̄ represents {2x− 3y ≤
6 ∧ y − 4z ≤ 8 ∧ 3z − 2w ≤ 7}. Despite the coefficient template, applying the
Resultant rule iteratively derives a new set of constraints {x − 6z ≤ 15, 3y −
8w ≤ 52, x− 4w ≤ 29} at the fixpoint. However, to derive x− 4w ≤ 29, tDBM
requires representing either x−6z ≤ 15 or 3y−8w ≤ 52. Thus, m̄ is not complete.

Choosing the coefficient template T is crucial for completeness. For instance,
if the template contains coefficients that are powers of two, running the Algo-
rithm 1 guarantees that all implicit constraints are derived and representable.
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Theorem 1. Given a tDBM m̄, Algorithm 1 computes a complete tDBM m̄′

under the TVPI system IT if and only if all implicit constraints are expressible.

Proof. Since all implicit constraints are expressible, Algorithm 1 strictly follows
Lemma 1 in [18].

While Algorithm 1 does not promise full completeness, it is sufficient for our
purposes. Consider the example shown in Fig. 2, to derive the marked constraint
p.offset − p.size ≤ −4, below are the constraints derived at each iteration:

1. p.offset − 4idx ≤ 0 and idx− l .len ≤ −1 derives p.offset − 4l .len ≤ −4.
2. p.offset−4l .len ≤ −4 and 4l .len− l .size ≤ 0 produces p.offset− l .size ≤ −4.
3. p.offset − l .size ≤ −4 and l .size − p.size ≤ 0 gives p.offset − p.size ≤ −4.

The Resultant rule specializes to the standard DBM closure whenever b =
d, and this closure is not limited to UTVPI constraints. For example, any pair of
constraints such as 2x− 3z ≤ 4 and 3z − y ≤ −1 can also use the DBM closure
to derive 2x− y ≤ 3. This gives us the opportunity to reuse that routine and to
build a tDBM saturation on top of it. Overall, we iteratively apply Resultant
by decomposing it into two steps:

1. (b ̸= d) ax− by ≤ c ∧ dy − ez ≤ f
ScaledResultant−−−−−−−−−−−→ a′x− b′z ≤ c′

2. (b = d) ax− by ≤ c ∧ dy − ez ≤ f
DbmClosure−−−−−−−−→ ax− ez ≤ c+ f

Step 1 aligns TVPI constraint coefficients to eliminate y. Step 2 reuses the
standard DBM closure. Accordingly, Algorithm 2 shows a tDBM version in which
TvpiReduce handles the first step and DbmClosure operates the second. By
Theorem 2, algorithm is equivalent to Algorithm 1.

Theorem 2. Given a tDBM m̄,

NelsonTvpiSaturation(m̄) ≡ DbmTvpiSaturation(m̄)

Proof. For any input tDBM m̄, Algorithm 2 repeatedly invokes TvpiReduce
(with coefficient alignment) and DbmClosure (no alignment). This is identical
to applying theResultant rule in Algorithm 1. Even the new derived constraint
can be used directly during iteration i, with the guarantee of the loop upper
bound ⌈lg(N)⌉−1, ensuring that all implicit constraints are ultimately captured
in the matrix, regardless of the order of steps (earlier or later).

As the above example shows, the first implicit constraint p.offset − 4l .len ≤
−4 is derived from TvpiReduce, and the other two from DbmClosure.

Our purpose is extending DBM to support TVPI constraints using a small
coefficient template. Experiments in Section 5 show that using three active coef-
ficients suffices, and TVPI constraints with non-unit coefficients remain few com-
pared with UTVPI constraints. Thus, running TvpiReduce is cheap, and Dbm-
Closure runs nearly as efficiently when only UTVPI constraints are present.
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Algorithm 2 A DBM closure based saturation for tDBM.

1: function TvpiReduce(m̄)
2: for x, y, z ∈ V do
3: for a, b, d, e ∈ T ∧ b ̸= d do
4: c := m̄ax,by, f := m̄dy,ez

5: if a′x− b′z ≤ c′ = ScaledResultant(ax− by ≤ c, dy − ez ≤ f) then
6: m̄ := m̄ ∪ {a′x− b′z ≤ c′}
7:
8: function DbmTvpiSaturation(m̄)
9: for i ∈ {0, . . . , ⌈lg(N)⌉ − 1} do
10: TvpiReduce(m̄)
11: DbmClosure(m̄)

3.2 Incremental Saturation

Existing abstract domains for DBM apply an incremental closure [10,17,2,3] to
restore DBM in closed form after each assignment or constraint strengthening,
making this procedure the dominant use. By updating only the affected en-
tries in the DBM, the algorithm runs more efficiently than the full saturation
(closure) algorithm. In this section, we present a worklist-based procedure that
incrementally applies the Resultant rule to propagate new constraints.

Algorithm 3 gives the pseudocode for incremental saturation. It adds the new
constraint ax−by ≤ c into m̄. Once the input constraint is tighter, the algorithm
first collects all existing constraints involving y (in positive occurrence) and
applies the Resultant rule to eliminate it, as shown in the purple box, then
repeats for x (orange box). Each elimination step produces new constraints that
contain only one of the two variables, x or y; we store them in the worklists
Wx and Wy, respectively. We present a graph representation (shown in Fig. 3a)
that illustrates and highlights the edges added to each list in their corresponding
colors. Next, we reuse those derived constraints to completely eliminate either
y or x (green box). As a result, none of the new constraints include y and x.
Specifically, we derive constraints between z and w through the transitive chain
{z, x}, {x, y}, {y, w} (see the green edge in Fig. 3a).

To illustrate how Algorithm 3 works, given a set of constraints with no im-
plicit ones, represented by a tDBM over the coefficient set T = {1, 4}:

idx− len ≤ −1 size− 4len ≤ 0 4len− size ≤ 0

4idx− 4len ≤ −4 4idx− size ≤ −4

Suppose we add ofs − 4idx ≤ 0 and perform incremental saturation. The algo-
rithm finds all inequalities involving idx and ofs: idx− len ≤ −1, 4idx− 4len ≤
−4, and 4idx−size ≤ −4. Applying the Resultant rule to eliminate idx yields
ofs − 4len <= −4 and ofs − size ≤ −4. With no existing constraints involving
ofs, no further constraints can be derived, and the tDBM is once again closed.

Lemma 1. Suppose a tDBM m̄ is closed under system IT , adding a new con-
straint l = ax− by ≤ c by Algorithm 3 yields m̄′ which is satisfiable if and only
if:
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Algorithm 3 Incremental saturation for tDBM.

1: function TvpiIncrementalSaturation(m̄, ax− by ≤ c)
2: m̄ := m̄ ∪ {ax− by ≤ c}
3: Wx := {},Wy := {}
4: for d, e, w ∈ T × T × V do ▷ successors related to y
5: if a′x− e′w ≤ c′ = ScaledResultant(ax− by ≤ c, dy − ew ≤ m̄dy,ew)

then
6: m̄ := m̄ ∪ {a′x− e′w ≤ c′}
7: Wx := Wx ∪ {a′x− e′w ≤ c′}

8: for d, e, z ∈ T × T × V do ▷ predecessors related to x
9: if e′z − b′y ≤ c′ = ScaledResultant(ez − dx ≤ m̄ez,dx, ax− by ≤ c) then
10: m̄ := m̄ ∪ {e′z − b′y ≤ c′}
11: Wy := Wy ∪ {e′z − b′y ≤ c′}

12: for ez − by ≤ c ∈ Wy do
13: for d, g, w ∈ T × T × V do ▷ successors related to y
14: if e′z − g′w ≤ c′ = ScaledResultant(ez − by ≤ c, dy − gw ≤ m̄dy,gw)

then
15: m̄ := m̄ ∪ {e′z − g′w ≤ c′}
16: for ax− ew ≤ c ∈ Wx do
17: for d, g, z ∈ T × T × V do ▷ predecessors related to x
18: if g′z − e′w ≤ c′ = ScaledResultant(gz − dx ≤ m̄gz,dx, ax− ew ≤ c)

then
19: m̄ := m̄ ∪ {g′z − e′w ≤ c′}

1. m̄′
ax,by ≤ c

2. ∃o ∈ m̄, dx− ew ≤ f := ScaledResultant(l, o), m̄′
dx,ew ≤ f

3. ∃o ∈ m̄, dz − ey ≤ f := ScaledResultant(o, l), m̄′
dz,ey ≤ f

4. for any constraint dz − ew ≤ f derived through the transitivity chain:
{z, x}, l, {y, w}, m̄′

dz,ew ≤ f

Theorem 3. Given a tDBM m̄ and a new constraint ax− by ≤ c, Algorithm 3
computes a complete tDBM m̄′ under the TVPI system IT if and only if all
implicit constraints are expressible.

Proof. Since all implicit constraints are expressible, Algorithm 3 strictly follows
Lemma 1.

The time complexity is O(K4N2). The correctness of Algorithm 3 is guaran-
teed by the Lemma 1. Due to the limitation of the coefficient template, running
Algorithm 3 guarantees completeness if all implicit constraints are derived and
representable in the tDBM. After incremental saturation, contradictions can be
detected by identifying negative cycles (Section 4).
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ax
dx a′x

x

by
dy b′y

y

e′zez · · ·
z

e′wew · · ·
w

c

(a)

Bottom: m̄ = ⊥tDBM ⇔ m̄ = ⊥DBM

Top: m̄ = ⊤tDBM ⇔ m̄ = ⊤DBM

Join: ⊔tDBM def
= m̄1 ⊔DBM m̄2

Meet: ⊓tDBM def
= m̄1 ⊓DBM m̄2

Order: ⊑tDBM def
= m̄1 ⊑DBM m̄2

Widening: ▽tDBM def
= m̄1▽

DBM m̄2

(b)

Fig. 3: (a) Graph view of the tDBM update after adding ax − by ≤ c with new
edges highlighted and the green dashed edge marking all implicit constraints
between z and w; (b) The lattice operations of Template DBM.

4 Template DBM Abstract Domain

Template DBM is a new weakly relational domain focused on inferring and check-
ing program properties expressible as TVPI constraints. It is based on tDBM,
where each constraint ax− by ≤ c corresponds to a specific entry in the matrix.

The concretization function γ maps a tDBM m̄ to a set of all possible values
assigned for variables that satisfy all potential constraints in m̄. Formally:

γ(m̄) ≜ {(s1, . . . , sn) ∈ Zn | ∀i, j ∈ [1..n], a, b ∈ T , a · si − b · sj ≤ m̄avibvj
}

si (sj) represents a value for a variable vi (vj).
A tDBM m̄ is unsatisfiable (empty) when repeatedly applying the Resul-

tant rule yields a contradiction. For example, a tDBM m̄ with coefficient tem-
plate T = {1, 2, 3, 4, 5}:

2y − x ≤ 3 5x− 3z ≤ −22 2z − 5p ≤ −2 3p− 4y ≤ 0

It is unsatisfiable because an implicit inequality 3p− 2x ≤ 6 contradicts another
implicit one, 2x− 3p ≤ −10, following:

1. applying Resultant rule for 3p−4y ≤ 0 and 2y−x ≤ 3 derives 3p−2x ≤ 6.
2. from 5x− 3z ≤ −22 and 2z − 5p ≤ −2, Resultant derives 2x− 3p ≤ −10.

As Nelson [18] showed that iterating the Resultant rule through saturation
Algorithm 2 exposes a contradiction. Thus, the unsatisfiable check boils down
to inspecting a saturated tDBM m̄: ∃x, y ∈ V, a, b ∈ T : m̄ax,by + m̄by,ax < 0.

A tDBM is bottom (resp. top) if and only if its DBM is bottom (resp. top).
For other domain operations, we leverage DBM operations for efficiency. All are
defined in Fig. 3b. Each operation performs element-wise matrix updates and
runs in quadratic time O(K2N2) at worst. All domain operations are safe ap-
proximations, but not the best (except for meet). For example, ⊔tDBM combines
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two tDBMs by taking the element-wise maximum of their entries. However, a
more precise approximation is obtained by finding the extreme points of the con-
vex hull and reconstructing the TVPI constraints accordingly. Consider a join
of two abstract states s1 and s2:

s1 :− i ≤ 0 ∧ i ≤ 9 ∧ −c ≤ 10 ∧ c ≤ −1 s2 : i = 10 ∧ c = 0

The convex hull join computes the result state as −i ≤ 0 ∧ i ≤ 10 ∧ −c ≤
10 ∧ c ≤ 0 ∧ 10c − i ≤ −10 ∧ 10i − c ≤ 100. In contrast, s1 ⊔tDBM s2 as
−i ≤ 0 ∧ i ≤ 10 ∧−c ≤ 10 ∧ c ≤ 0. While join can be designed using the convex
hull algorithm, our design is simpler and takes operations from DBM directly.

The primitive operations during analysis are the addition or removal of vari-
ables. For an assignment x := e, we define the transfer function (see Algorithm 4)
that handles two cases. When e is not a linear expression, we over-approximate
its value by its interval [−e−, e+]; otherwise, we approximate it more precisely by
using interval information to iteratively drop variables on e until the remaining
constraint follows the TVPI form. We first approximate assignment in UTVPI
form, since our tDBM natively represents them. Next, we attempt to convert
the assignment to TVPI form. If e involves any unbounded variable, we con-
servatively approximate its value as ⊤. Finally, we insert each new constraint
with incremental saturation to maintain closure. Although more precise approx-
imations exist, this simple approach is effective for analyzing programs such as
Fig. 1. As an example, let us consider the assignment ofs = l->isz * idx at
line 10 with a pre-abstract state:

l .isz ≤ 4 ∧ −l .isz ≤ −4 ∧ −idx ≤ 0 ∧ · · ·

Although the expression l->isz * idx is non-linear, we know from the pre-state
that l->isz is l .isz ≤ 4∧−l .isz ≤ −4. It is safe to rewrite that expression as 4 *

idx and then invoke the Algorithm 4. The assignment thereby is abstracting as
two TVPI constraints, ±(ofs−4idx ) ≤ 0, and one UTVPI constraint, idx−ofs ≤
0, since idx has a known lower bound. After incremental saturation completed,
the resulting state remains closed.

For variable removal, we denote ∃x.m̄ for eliminating all constraints on x from
the tDBM m̄. In practice, this simply means dropping all rows and columns for
x (including ghost variables). To preserve precision, saturating m̄ is required
before existential quantification.

5 Implementation and Experimental Evaluation

We have implemented Template DBM6 in the Crab library [11]. We reuse the
implementation from [10] as the underlying DBM which is tailored to make
use of a direct graph m̄ := ⟨V,E⟩. Nodes V correspond to the combination of
variables and coefficients V×T and each constraint ax−by ≤ c is represented as

6 Available at https://github.com/LinerSu/crab/tree/tvpi_dbm

https://github.com/LinerSu/crab/tree/tvpi_dbm
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Algorithm 4 Transfer function for assignment.

1: function TvpiAssign(m̄, Jx := eK)
2: T := {}
3: if e = a1 · x1 + a2 · x2 + . . .+ an · xn + c ∧ ∀i ∈ [1..n] : ai ∈ Z≥0 then
4: for i ∈ [1..n] do
5: e1i :=

∑
j ̸=i aj · xj + (ai − 1) · xi + c ▷ dropping xi

6: T := T ∪ {y − xi ≤ e+1i;xi − y ≤ e−1i}
7: if ai ∈ T then
8: eai :=

∑
j ̸=i aj · xj + c ▷ dropping ai · xi

9: T := T ∪ {y − aixi ≤ e+ai; aixi − y ≤ e−ai}
10: else
11: T := T ∪ {x ≤ e+,−x ≤ −e−}
12: for t ∈ T do
13: m̄ := TvpiIncrementalSaturation(m̄, t)

a directed edge ax
c−→ by. The graph representation avoids the O(K2N2) space

of a matrix, since inferred constraints are often quite sparse during analysis [9],
especially after widening in loop-invariant computation [21]. Besides, the graph
representation can efficiently perform the domain operations. For example, the
join can be implemented by merging two graphs and taking the maximum weight
for each edge. The inclusion check m̄1 ⊑tDBM m̄2 can also be done by checking
if all edges in m̄2 can be entailed by edges in m̄1, which can be done in linear
time w.r.t the number of edges (inequalities) |E|. The implementation for the
remaining domain operations follows algorithms discussed in Section 4.

For efficiency, we implement incremental saturation instead of full saturation
(Algorithm 2) for analysis. It performs local updates on each new assignment or
assumption for low amortized cost. Our implementation of Algorithm 3 is based
on DBM incremental closure. This special version splits into two phases: first, it
runs Algorithm 3 where the Resultant rule only applies to cases requiring co-
efficient alignment; then it invokes IncrementalDbmClosure with previously
derived constraints to finish saturation. While this version misses constraints
since implied constraints from phase two can be used at once, later experiments
show that this version preserves good precision and performance.

In the paper, we demonstrate how Template DBM infers constraints to check
for buffer overflows in Fig. 1. This example is from a case study in [23], where
an abstract interpreter preprocesses the program to prove and remove mem-
ory safety checks before a bounded model checker completes verification. These
checks as assertions guard each memory access, and the interpreter proves them
both before and after loop unrolling. We reuse this study to evaluate Template
DBM performance and precision in proving memory safety, while the details of
how the interpreter works are outside the scope here. We also omit discussion
on interpreter effectiveness, as it has already been discussed in [23].
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(a) (b)

Fig. 4: (a) Zones vs. Template DBM and (b) Polyhedra (PK) vs. Template DBM.

The benchmark suites originate from two open-source production codebases:
aws-c-sdk and firedancer, with a total of 139 benchmarks7. Note that bench-
marks drawn from aws-c-sdk include the aws-c-common component. These
suites cover programs from simple arithmetic computations to complex data
structure manipulations. The benchmarks also include loops to evaluate domain
operation performance and precision in proving assertions before and after loop
unrolling. The experiment here measures how the interpreter using different nu-
merical domains performs as the program size varies.

We compare Template DBM with the Zones (UTVPI) and the Polyhedra (lin-
ear inequality) domains. Because Template DBM and Zones use the same DBM
implementation, Zones serves as the baseline for precision and performance com-
parison. We choose Polyhedra instead of the original TVPI [20] because our exper-
imental results (as shown later) indicate that Template DBM achieves nearly the
same precision as Polyhedra on most benchmarks. Besides, the TVPI implemen-
tation8 is unmaintained. Having a direct side-by-side evaluation is challenging.
For Polyhedra, we use the implementation from the ELINA library [22].

For consistency, we choose the same configurations for running all domains.
Template DBM employs a predefined coefficient template {1, 2, 3, 4, 5, 8, 10, 16, 24,
32, 40} with 11 heuristic numbers. Each task is given a timeout of 600 seconds.
All experimental results are collected from a machine with an Intel Xeon E5-
2680 @2.50GHz, with 256 GB RAM. The artifact and results are available at
https://doi.org/10.5281/zenodo.16075045.

7 Available at https://github.com/LinerSu/TVPI-Domain-Benchmarks
8 The original implementation is at https://github.com/axel-simon/tvpi.

https://doi.org/10.5281/zenodo.16075045
https://github.com/LinerSu/TVPI-Domain-Benchmarks
https://github.com/axel-simon/tvpi
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suite category
Before loop unroll After loop unroll

Total Zones tDBM PK Total Zones tDBM PK

aws-c-sdk

array list 24 75% 83% 83% 62 61% 65% 65%
hash table 498 83% 85% 85% 2171 54% 58% 58%
others 1689 67% 67% 67% 2853 56% 59% 59%

firedancer

tango 33 36% 85% 100% 151 17% 85% 100%
util 106 62% 62% 62% 195 75% 75% 87%
others 270 24% 24% 11% 305 95% 95% 86%

total 2620 65% 66% 65% 5737 57% 62% 62%

Table 1: Precision across Zones, Template DBM (tDBM), and Polyhedra (PK).

All performance results for analyzing each program before and after loop
unrolling are shown in Fig. 4. Zones timed out on 5 before unrolling, and on 2
after. Template DBM has 1 more pre-unrolling timeout case than Zones. Polyhe-
dra timed out 8 more times than Zones before unrolling and 1 more after. As
shown in Fig. 4a, Template DBM runs slower but remains within a similar range
to Zones after excluding timeouts. Before loop unrolling, Zones averages 0.2s
(SD = 0.6) and Template DBM 0.4s (SD = 1.9); after loop unrolling, Zones takes
0.1s (SD = 0.5) and Template DBM 0.2s (SD = 0.7). We achieve similar running
times because it extends dimensions to support TVPI constraints. Since not all
variables require extra dimensions, the size of Template DBM remains compara-
ble to Zones in most cases. However, as the graph shows one additional timeout
and one major slowdown (i.e., the 19 seconds to complete), we diagnosed these
and conclude that heavily dimensioned matrices harm operation speed. This lim-
itation can be addressed in future work by implementing a more efficient join
algorithm and involving a geometric approach to remove redundant constraints,
such as the filter operation introduced from the original TVPI work [20]. In
Fig. 4b, Polyhedra does not scale well, with 2.5s (SD = 15.0) average analysis
time before unrolling and 2.2s (SD = 7.4) after unrolling. Overall, Template DBM
has performance comparable to Zones and is faster than Polyhedra.

Precision is evaluated in terms of how many assertions are successfully proved
in each domain. The compared results before and after loop unrolling are shown
in Table 1. We keep assertions proved before loop unrolling instead of discharging
and prevent reproving them by adding assumptions. This approach explains why
the total assertions grow dramatically after unrolling.

In the table, regardless of loop unrolling stage, the number of assertions
proved by Template DBM lies between Zones and Polyhedra. We are more precise
than Zones because proving assertions requires TVPI constraints, which Zones
cannot express. For instance, in array list, hash table, and tango categories, most
assertion checks require constraints like offset ∗4−size ≤ 0 with offset as pointer
offset and size as object size, thus driving significantly different assertion rates
across domains. Compared to the “others” category from aws-c-sdk, where al-
most all domains prove the same number of assertions since most checks only
require UTVPI constraints to prove. An important observation is that analyzing
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each benchmark uses fewer than three coefficients from the template. Conse-
quently, the number of non-unit coefficient TVPI constraints grows sparsely yet
remains sufficient to verify most assertions.

On the other hand, Template DBM and Polyhedra solve assertions at similar
rates across most benchmarks. There are 8 benchmarks where Polyhedra solves
extra 9 assertions before and 59 after unrolling. Among these 8 cases, Polyhedra
covers more general linear inequalities, such as x+y+z ≤ 10, that neither Zones
nor Template DBM support. Template DBM also fails to prove some assertions due
to its limited support for the assignment transfer function. The implementation
only handles the form x := e and not scaled assignments such as 24 ∗x := 24 ∗ e,
though it can be notably improved. However, these assertions represent only a
small fraction of all benchmarks and assertions.

In the “others” category from firedancer, Polyhedra proves fewer assertions
than either Zones or Template DBM. It fails on 79 assertions on 4 cases before
loop unrolling and 52 across 4 cases after unrolling. ELINA library logs re-
port coefficient-overflow and vector-product exceptions 9 during these analyses,
which cause imprecision. To isolate the ELINA flaw, we use the APRON [13]
and PPL [1] Polyhedra as back-ends to verify these cases; either they got the
same assertion rate as Template DBM or timed out. We therefore conclude that
Polyhedra can, in theory, prove these assertions but, as Table 1 shows, it fails
due to limitations in the ELINA implementation.

Overall, our experiment demonstrates that Template DBM offers greater scal-
ability than Polyhedra while providing higher precision than Zones.

6 Related Work

We have already seen some abstract domains close to our work in Section 1. This
section explores their deeper connections and examines alternative approaches.

The TVPI domain, originally from [20], represents arbitrary inequalities of
the form ax + by ≤ c with a, b, c ∈ Q. Our work restricts this to ax − by ≤ c
where a, b ∈ T (a predefined coefficient template) and c ∈ Z, matching the DBM
structure for difference bounds. One way to extend our tDBM is to introduce
dimensions ax+ and ax− (where ax+ = −ax−), as in the Octagons domain, to
represent more general TVPI constraints ±ax ± by ≤ c. However, this dimen-
sional increase may cause a blow-up and thus degrade performance.

Our work instead prioritizes scalability, which relies on the underlying DBM
operations. Template DBM performs saturation to expose all implicit constraints,
directly applying the standard DBM operations without altering its structure. In
contrast, the original work treats constraints as a geometric polyhedron, leading
to very different design choices for domain operations.

Our work aims to limit the form of TVPI constraints by fixing the coeffi-
cient template. A similar approach has been applied in other abstract domains.
Logahedra [12] is a TVPI-based domain which restricts coefficients to powers of

9 Issue report: https://github.com/eth-sri/ELINA/issues/39

https://github.com/eth-sri/ELINA/issues/39
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two. The work also introduces a bounded version, which limits the exponent
and thus represents a finite set of inequalities. This version preserves cubic time
complexity for core operations like completion and join. Unlike Logahedra, our
domain allows custom coefficients, offering a more flexible configuration since
array strides are not always powers of two 10. Template Polyhedra [19] domain
fixes linear expressions ahead of time by a predefined template and tracks linear
inequalities only for those expressions. As a result, each abstract operation runs
in polynomial time relative to the number of template expressions. However, the
template must be chosen heuristically at each program location, and each post-
condition operation invokes a linear programming (LP) solver to compute the
tightest bound for each template expression. Our approach requires only one co-
efficient template to restrict the TVPI form and computes post abstract states
efficiently using the incremental saturation algorithm we propose whenever a
new assignment or assumption is added.

TheWeighted Hexagon [8] domain captures invariants of the form x ∈ [−a, b]∧
x ≤ a · y where a, b ∈ I≥0 with I representing reals or rationals. It features at
most six edges per pair of variables and provides a transitive closure algorithm
in cubic time. However, it is less expressive because x ≤ a · y relations are lim-
ited to only the maximal and minimal slopes, and the domain cannot represent
constraints with constant offsets. For example, x − 2y ≤ −3 can only be over-
approximated as x ≤ 2y. The Stripes [7] domain expresses linear inequalities of
the form x − a · (y[+z]) ≥ b with a, b ∈ Z. It serves only as a subdomain for
the symbolic representation of such inequalities and for propagating informa-
tion back and forth between other subdomains. It is built in Clousot [6] and
serves a similar purpose, but with a different trade-off between precision and
efficiency, and with different expectations of surrounding domains. For example,
Stripes assumes that equalities are maintained by some other domain along it.
This makes direct empirical comparison with Template DBM difficult since they
are not easily implemented within the same system.

7 Conclusion

We introduce a new weakly numerical abstract domain, Template DBM, repre-
senting inequalities of the form ax− by ≤ c, between pairs of variables x and y,
where a and b come from a predefined coefficient template and c is an integer
constant. This work shows how to use a DBM to represent domain elements. We
provide algorithms for full saturation, incremental saturation, and lattice oper-
ations for the domain. In terms of precision and performance, Template DBM
lies between the Zones and Polyhedra domains. Our experiments demonstrate
that its runtime is comparable to Zones, while the number of assertion checks it
solves for memory-safety verification is close to that of Polyhedra.

10 In the hash table category, we capture TVPI constraints requiring a coefficient of
24, which is the allocation size of a C structure without alignment.
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21. Singh, G., Püschel, M., Vechev, M.T.: Making numerical program analysis fast.
In: Grove, D., Blackburn, S.M. (eds.) Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015. pp. 303–313. ACM (2015). https://doi.org/10.1145/27
37924.2738000, https://doi.org/10.1145/2737924.2738000

22. Singh, G., Püschel, M., Vechev, M.T.: Fast polyhedra abstract domain. In:
Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages, POPL 2017, Paris, France, Jan-
uary 18-20, 2017. pp. 46–59. ACM (2017). https://doi.org/10.1145/3009837.
3009885, https://doi.org/10.1145/3009837.3009885

23. Su, Y., Navas, J.A., Gurfinkel, A., Garcia-Contreras, I.: Automatic inference
of relational object invariants. In: Krishna, S., Sankaranarayanan, S., Trivedi,
A. (eds.) Verification, Model Checking, and Abstract Interpretation - 26th In-
ternational Conference, VMCAI 2025, Denver, CO, USA, January 20-21, 2025,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 15529, pp. 214–
236. Springer (2025). https://doi.org/10.1007/978-3-031-82700-6_10,
https://doi.org/10.1007/978-3-031-82700-6_10

24. Zhou, J., Criswell, J., Hicks, M.: Fat pointers for temporal memory safety of C.
Proc. ACM Program. Lang. 7(OOPSLA1), 316–347 (2023). https://doi.org/10
.1145/3586038, https://doi.org/10.1145/3586038

https://doi.org/10.1007/3-540-45013-0\_7
https://doi.org/10.1007/3-540-45013-0_7
https://doi.org/10.1007/3-540-45013-0_7
https://doi.org/10.1145/2737924.2738000
https://doi.org/10.1145/2737924.2738000
https://doi.org/10.1145/2737924.2738000
https://doi.org/10.1145/2737924.2738000
https://doi.org/10.1145/2737924.2738000
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1007/978-3-031-82700-6\_10
https://doi.org/10.1007/978-3-031-82700-6_10
https://doi.org/10.1007/978-3-031-82700-6_10
https://doi.org/10.1145/3586038
https://doi.org/10.1145/3586038
https://doi.org/10.1145/3586038
https://doi.org/10.1145/3586038
https://doi.org/10.1145/3586038

	Template DBM: A New Weakly Relational Domain for Efficient Memory-Access Validation

