Generating Component Interfaces by Integrating Static and Symbolic Analysis, Learning, and Runtime Monitoring

Falk Howar¹, Dimitra Giannakopoulou², Malte Mues³, and Jorge A. Navas⁴

¹ Dortmund University of Technology and Fraunhofer ISST, Dortmund, Germany
² NASA Ames Research Center, Moffett Field, CA, USA
³ Dortmund University of Technology, Dortmund, Germany
⁴ Computer Science Laboratory, SRI International, USA

Abstract. Behavioral interfaces describe the safe interactions with a component without exposing its internal variables and computation. As such, they can serve as documentation or formal contracts for black-box components in safety-critical systems. Learning-based generation of interfaces relies on learning algorithms for inferring behavioral interfaces from observations, which are in turn checked for correctness by formal analysis techniques. Learning-based interface generation is therefore an interesting target when studying integration and combination of different formal analysis methods. In this paper, which accompanies an invited talk at the ISoLA 2018 track “A Broader View on Verification: From Static to Runtime and Back”, we introduce interpolation and symbolic search for validating inferred interfaces. We discuss briefly how interface validation may utilize information from runtime monitoring.

1 Introduction

In the automotive and aeronautic industries, it is customary for original equipment manufacturers (OEMs) to contract the design and implementation of system components to external companies [18]. In such a scenario, the OEM specifies a set of requirements on the component that is to be developed. The contractor develops the component as a black-box: the delivered product does not typically include intermediate artifacts such as design models or source code. As a consequence, the only means of verifying external components is black-box testing, which provides no formal guarantees.

This situation can be mitigated to some extent if contractors produce high-level behavioral models which, while suitable for verification, do not expose details of the component implementation. For example, behavioral component interfaces describe the safe interactions with a component without exposing its internal variables and computation. Such interfaces can serve as assume-guarantee-style formal contracts for black-box components of flight-critical systems [18]. In
general, substituting component models with abstract component interfaces can significantly increase the scalability of formal analysis techniques for component-based safety-critical systems.

In order to generate such component interfaces for component implementations, the internal details of the component have to be abstracted and relevant observable behavior has to be projected to the interface. Learning-based interface-generation frameworks use learning algorithms to infer behavioral interfaces from observations; by design, the generated interfaces do not include structural or internal component information. On the other hand, learning from observations needs to be complemented by methods that check the quality (i.e., accuracy) of an inferred model, and that trigger model refinement, if necessary. The variety of formal techniques involved in learning-based interface generation makes interface learning frameworks great platforms for studying the integration and combination of different formal analysis methods.

This work uses the Java Pathfinder extension PSYCO [14, 17] for learning-based computation of behavioral interfaces of Java components. As discussed above, and as shown in Figure 1, PSYCO iterates between two modes of operation when generating interfaces: interface learning, the part that learns a model from observations, and interface checking, the part that checks the quality of the produced interfaces.

To generate candidate interfaces, PSYCO uses a combination of 1) active automata learning [2, 21] with alphabet abstraction refinement [19] and 2) dynamic symbolic execution [15]. Active automata learning algorithms infer finite state models by generating sequences of invocations to component methods and
observing the resulting output of components. Alphabet abstraction represents sets of equivalent concrete method invocations (especially with data parameters) symbolically. Symbolic predicates are recorded when executing method sequences generated by the learning algorithm with symbolic data parameters. Since automata learning infers models from observations, it is neither correct nor complete unless inferred models can be discharged against component implementations. To validate a candidate interface, PSYCO compares the interface to the component implementation up to a user-specified depth. As a consequence, PSYCO cannot provide strong guarantees on the correctness of generated interfaces.

This paper extends the Interface Checker of PSYCO (shown in the right half of Figure 1) with additional approaches. First, we use interpolation [10] to obtain over-approximating state predicates from paths explored in symbolic execution. These predicates allow us to skip symbolic execution for already explored parts of the state space. Second, symbolic search can be used for checking correctness of candidate interfaces. The basis for describing and implementing these extensions is a unified logic-based encoding of component interfaces and internal behavior. Finally, we briefly discuss how runtime monitoring and modern active learning algorithms can be used for “life-long” learning of interfaces at runtime. We evaluate the presented extensions on a set of Java components that have served as benchmarks in previous works on PSYCO.

The contribution of the presented work is two-fold: On the one hand, our extensions enable PSYCO to actually compute correct component interfaces — as opposed to interfaces with bounded guarantees. On the other hand, we show how quite different formal methods (at design time as well as at runtime) can be integrated and exchange information to solve the interface generation problem.

Related Work. Interface generation for white-box components has been studied extensively in the literature (e.g., [1, 13, 14, 16, 29, 6]). To the best of our knowledge, PSYCO [14, 17] is unique in that it generates interfaces that combine constraints over sequences of method invocations with constraints over values of method parameters and integrates static, dynamic, and symbolic analysis.

In this paper, we focus on the problem of checking equivalence of a conjectured interface model and a component implementation. We show that this problem can be formulated as a reachability analysis on the product of component and interface, which is a classic model-checking problem. Coudert et al. [9] present the idea of building the cross product of a component interface and its specification using Boolean formulas for verifying implementation correctness of electronic circuits. Our symbolic search is similar to this approach. We provide a state-of-the-art implementation of the search algorithm that allows solving of cross products in quantified bitvector logic.

Binary decision diagrams have been successfully used in the past as encoding for model checking algorithms to increase verifiable system size (e.g. [5]). These works are not directly applicable to our scenario as methods have data parameters which appear as quantified variables in state predicates. Another class of approaches relies on logic-based encoding and SAT- or SMT-solvers: Biere
et. al. [4] developed a logic-based Bounded Model Checker for LTL properties. McMillan [26] has shown that model checking can verify CTL properties using a SAT-solver able to solve universally quantified Boolean formulas. These works have shown that a symbolic encoding based on Boolean formulas is more space-efficient than BDDs but depends on deciding quantified formulas for reaching completeness. More recent works replaced SAT-solvers by SMT-solvers [3, 8]. Ge et al. [12] implemented complete instantiation for quantified formulas in Z3 allowing to solve quantified formulas in SMT. Wintersteiger et al. [30] extended this for the theory of quantified bitvector formulas (QBVF) and introduced symbolic quantifier instantiation to avoid complete instantiations whenever possible. Unfortunately, no effective interpolation techniques are available for bitvector formulas with or without quantifiers.

Jaffar et al. [24] were the first to tackle the path-explosion problem of symbolic execution by annotating symbolic states with learned facts (i.e., interpolants) after a search backtracks, and pruning future searches. This work was presented in the context of Constraint Logic Programming and it was extended to deal with C programs by [23, 22], but limited to intra-procedural programs over linear arithmetic and arrays. McMillan [27] generalized further Jaffar and colleagues’ ideas to deal with richer SMT theories and recursive functions, naming also the idea with the term Lazy Annotation. Our work applies the ideas presented in these works to symbolic execution of reactive components. The main difference between our use case and symbolic execution of sequential programs is that for components there is no sensible notion of program location. The environment can call arbitrary sequences of methods. As a consequence, we can use state predicates only for component states at the same depth of exploration.

Outline. The remainder of the paper is structured as follows: We start by providing some intuition on the problem we are addressing in the next section before providing some formal preliminaries in Section 3. In Section 4, we present the technical details on the new extensions to PSYCO. Results from an evaluation can be found in Section 5. We conclude in Section 6 by discussing future research directions with a particular focus on combining analysis steps at design time and at runtime.

2 Motivating Example

We are interested in generating behavioral interfaces for components. In our context, a component comprises a finite set of primitive state variables and one or more methods with data parameters that operate on the state variables. Recursion and loops without constant bounds are not allowed in methods. This is a common restriction for embedded systems that must guarantee safety critical constraints. A formal definition of components can be found in [17, 14].

For the remainder of the paper we assume JAVA implementations for components. An example of a component is shown in Figure 2a. The Explorer Component exposes methods move(int p) and check(). Method move adds the value
class Explorer {
 int x = 0;
 void move (int p) {
 if (x < 200 && 0 < p && p < 20)
 x = x + p;
 }
 void check () {
 assert x != 0;
 }
}

I = (x = 0)

ϕ_m,1 = (x ≥ 200) ∧ (x’ = x)
ϕ_m,2 = (x < 200) ∧ (0 ≥ p) ∧ (x’ = x)
ϕ_m,3 = (x < 200) ∧ (0 < p) ∧ (p ≥ 20) ∧ (x’ = x)
ϕ_m,4 = (x < 200) ∧ (0 < p) ∧ (p < 20) ∧ (x’ = x + p)

ϕ_c,1 = (x ≠ 0) ∧ (x’ = x)
ϕ_c,2 = (x = 0) ∧ (x’ = x) // assertion failure.

Fig. 2: JAVA Component (a), Corresponding Symbolic Method Paths (b), and Behavioral Interface (c).

of parameter p to internal state variable x if x and p are within certain bounds. Method check asserts that state variable x is not zero.

Behavioral interfaces are formal models of components that describe all sequences of method invocations on a component that are safe, i.e., will not lead to errors. For the Explorer component shown in the figure, the sequence of method invocations τ_1 = move(1) check() will not lead to an error while sequence τ_2 = move(0) check() leads to an assertion violation. The interfaces generated by PSYCO are finite-state automata whose transitions are labeled with method names and guarded with constraints on the corresponding method parameters, as shown in Figure 2c. Initially, it is not safe to call check (the automaton enters the error state q_π). The guards partition the input spaces of parameters: Invocations of move with values of p in the interval [1, 19] put the component into a state (q_1 in the model) from which all method invocations are safe. Calling move after instantiation with value of p outside [1, 19] has no effect on the state of the component.

As shown in Figure 1 and detailed in [17], PSYCO generates interfaces by iterating two modes of operation: The interface learner generates conjectured interfaces using a combination of active automata learning, automated alphabet abstraction, and dynamic symbolic execution. As learning is neither sound nor complete, learned interfaces have to be validated against the component implementation. The interface checker of PSYCO does this by executing the interface

\[p \leq 0 \lor 20 \leq p \]

\[[0 < p \land p < 20] \]

\[q_0 \]
\[q_1 \]
\[q_{\pi} \]
\[\Sigma \]
\[check() \]
\[move(p) \]
\[move(p) \]

As shown in Figure 1 and detailed in [17], PSYCO generates interfaces by iterating two modes of operation: The interface learner generates conjectured interfaces using a combination of active automata learning, automated alphabet abstraction, and dynamic symbolic execution. As learning is neither sound nor complete, learned interfaces have to be validated against the component implementation. The interface checker of PSYCO does this by executing the interface
and the component in parallel, and checking agreement of their error states. For the remainder of the paper, we focus on two extensions of the interface checker that compute correctness of interfaces on symbolic representations of component and interface.

Figure 2b shows fully symbolic execution paths (including symbolic state variables) of methods of the Explorer component. PSYCO uses the JDART dynamic symbolic execution engine for computing these paths. These fully symbolic method summaries can be understood as a logic-based encoding of the component’s behavior as a transition system. We can represent the interface as a symbolic transition system, too. In the next section, we explain how candidate interfaces are validated against components where symbolic representations are used for both components and interfaces.

3 Symbolic Representation of Components and Interfaces

We are interested in reactive components that manipulate a set of internal state variables. Components expose methods with data parameters that can be invoked from the outside. We abstract from output since we are only interested in safe interactions with a component, i.e., ones that do not trigger an error. For the sake of presentation we assume that all methods have the same number of parameters. We use logic-based symbolic transition systems for specifying the behavior of components and their interfaces.

Let \mathbb{L} be a logic with decidable entailment $|=_{\mathbb{L}}$, and a set V of values allowed in \mathbb{L}. For the sake of readability we abstract from types in the presentation. For a formula φ in \mathbb{L} with free variables x, we write $\varphi[x]$ when we want to emphasize that φ has free variables x and \mathbb{F}_x for the set of formulas with free variables x. We write $\varphi[y/x]$ for the formula that results from replacing x by y in φ. For variables $x = (x_1, \ldots, x_n)$, a valuation is a mapping $\sigma: x \mapsto V$ and \mathbb{V}_x is the set of all valuations of x. For a formula $\varphi[x]$ and a valuation $\sigma \in \mathbb{V}_x$, let $\varphi[\sigma]$ denote the instantiation of x by σ in φ, i.e., $\varphi[\sigma(x_1)/x_1][\ldots][\sigma(x_n)/x_n]$. A valuation σ satisfies φ if $\varphi[\sigma]$ is true. A formula φ is satisfiable if there exists a valuation σ that satisfies φ. When a formula $\varphi[x]$ entails a formula $\psi[x]$, denoted by $\varphi |=_{\mathbb{L}} \psi$, then $\varphi[\sigma]$ being true implies that $\psi[\sigma]$ is true for any valuation σ in \mathbb{V}_x. We can test entailment by checking if $\varphi \land \neg \psi$ is satisfiable. If this formula is satisfiable then φ does not entail ψ. Entailment is more complex to check for formulas $\varphi[x]$ and $\psi[y]$, where y contains variables that do not belong to x. Let $z = y \setminus x$. In such a case, the formula testing for entailment becomes $(\varphi \land \forall z. \neg \psi)$, where $\forall z. \neg \psi$ denotes the formula in which all variables in z are bound by universal quantifiers for $\neg \psi$. Finally, if we have two inconsistent formulas $\varphi[x]$ and $\psi[y]$ (i.e., $\varphi \land \psi$ is not satisfiable), an interpolant [10] is a formula $i[x \cap y]$ over the common variables in φ and ψ that is implied by φ (i.e., $\varphi \implies i$) and inconsistent with ψ (i.e., $i \land \psi$ is unsatisfiable).

Definition 1 (Symbolic Transition System). A symbolic transition system is a tuple $\text{STS} = (M, x, I, T, T_\pi)$, where M is a finite set of methods with method
parameters \(p, x \) is a set of state variables, \(\mathcal{I}[x] \) is a logic formula describing a set of initial states, and \(\mathcal{T} \subseteq M \times \mathcal{F}_{x,p,x'} \) is a set of guarded method executions (i.e., transitions) with guards over state variables \(x \) and method parameters \(p \), and effects on updated state variables \(x' \). Finally, \(\mathcal{T}_n \subseteq \mathcal{T} \) is a subset of guarded method executions that lead to errors.

For the remainder of this paper, we focus on deterministic and input-complete symbolic transition systems, where for every method \(m \in M \), every valuation \(v_x \in V_x \) of state variables and every valuation \(v_p \in V_p \) of method parameters, there exists exactly one transition \((m, \varphi) \in \mathcal{T} \) for which \(\varphi[v_x][v_p] \) is satisfiable.

We define the semantics of a symbolic transition system \(\mathcal{T} = (M, x, \mathcal{I}, \mathcal{T}, \mathcal{T}_n) \) in terms of feasible sequences of transitions. For a sequence \((m_1, \varphi_1), \ldots, (m_k, \varphi_k) \) of transitions, we define the strongest postcondition, denoted by \(\text{spc}(I \cdot \varphi_1 \cdot \ldots \cdot \varphi_k) \), as the conjunction

\[
\mathcal{I}[y_1/x] \land \varphi_1[y_1/x][p_1/p][y_2/x'] \land \ldots \land \varphi_k[y_k/x][p_k/p][x/x'],
\]

where we assume sets \(y_i \) and \(p_i \) to contain uniquely named variables (especially when working with multiple post conditions). Analogously, the weakest precondition of a sequence of transitions and a state predicate \(\psi[x] \), denoted by \(\text{wpc}(\varphi_1 \cdot \ldots \cdot \varphi_k \cdot \psi) \), is the conjunction

\[
\varphi_1[x/x][p_1/p][y_1/x'] \land \ldots \land \varphi_k[y_k/x][p_k/p][y_{k+1}/x'] \land \psi[y_{k+1}/x].
\]

Please note, that \(\text{wpc} \) and \(\text{spc} \) are formulas over \(x \) and sets of uniquely named variables.

A sequence \((m_1, \varphi_1), \ldots, (m_k, \varphi_k) \) of transitions is a (symbolic) trace of \(\mathcal{STS} \) if the first \(k-1 \) transitions are from \((\mathcal{T} \setminus \mathcal{T}_n) \) and \(\text{spc}(I \cdot \varphi_1 \cdot \ldots \cdot \varphi_k) \) is satisfiable. It is a safe trace if it ends with a transition from \(\mathcal{T} \setminus \mathcal{T}_n \). A trace that ends with a transition from \(\mathcal{T}_n \) is an error trace of \(\mathcal{STS} \).

Example. Figure 2b shows path conditions for the JAVA component from Figure 2a. These paths are the basis for \(\mathcal{STS}_{Ex} = (M, x, \mathcal{I}, \mathcal{T}, \mathcal{T}_n) \) with methods \(M = \{ \text{move}(p), \text{check}() \} \), variables \(x = \{ x \} \), initial condition \(I = (x = 0) \), as well as transitions \(\mathcal{T} = \{ (\text{move}(p), \varphi_{m,1}), \ldots, (\text{check}(), \varphi_{c,2}) \} \) and \(\mathcal{T}_n = \{ (\text{check}(), \varphi_{c,2}) \} \). The strongest post-condition of the sequence of transitions \((\text{move}(p), \varphi_{m,2}), (\text{check}(), \varphi_{c,2}) \) is

\[
(y_1 = 0) \land (y_1 < 200) \land (0 \geq y_2) \land (y_3 = y_1) \land (y_3 = 0) \land (x = y_3).
\]

The condition is satisfiable, which makes the transition sequence an error trace of \(\mathcal{STS}_{Ex} \). Also, the condition describes the strongest post-condition on \(x \) after executing these method paths in sequence.

Behavioral Interfaces We fix a component with set of methods \(M \) and method parameters \(p \). A behavioral interface is a finite automaton that describes the safe traces of the component.
Definition 2 (Behavioral Interface). A behavioral interface is a tuple $A = \langle \Sigma, Q, q_0, q_\pi, \Gamma \rangle$, where $\Sigma \subseteq M \times \mathcal{P}_p$ is a finite set of guarded methods (and guards are only over p), Q is a finite set of states, $q_0 \in Q$ is the initial state, $q_\pi \in Q$ is the error state, and $\Gamma : (Q \setminus \{q_\pi\}) \times \Sigma \rightarrow Q$ is the transition function.

As for symbolic transition systems, we assume deterministic automata where for every method $m \in M$, and every $v_p \in \mathcal{P}_p$ there exists exactly one transition $(m, \varphi) \in \Gamma$ for which $\varphi[v_p]$ is satisfiable.

For some fixed mapping $\kappa : Q \rightarrow \mathbb{N}_0$, we define the semantics of an interface automaton $A = \langle \Sigma, Q, q_0, q_\pi, \Gamma \rangle$ by means of the symbolic transition system $STS_A = \langle M, x, I, T, T_\pi \rangle$ where M has been fixed above, $x = \{x_q\}$ contains a single variable for maintaining the current state, the initial condition q_0 is $(x_q = \kappa(q_0))$, and for every transition $(q, (m, \varphi), q') \in \Gamma$, we define transition $t = (m, \psi) \in T$ with $\psi = (x_q = \kappa(q) \land \varphi \land x_q' = \kappa(q'))$. We add t to T_π if $q' = q_\pi$.

A sequence of method invocations is safe in A if it is a safe trace of STS_A and erroneous if it is an error trace of STS_A.

Example. Figure 2c shows the behavioral interface for the component from Figure 2. Formally, the interface is defined by the tuple $A_{Ex} = \langle \Sigma, Q, q_0, q_\pi, \Gamma \rangle$ with $\Sigma = \{\text{move}(p), (0 < p \land p < 20), \ldots, \text{check}(), \text{true}\}$, states $Q = \{q_0, q_1, q_\pi\}$ and transitions as in the figure. When generating a symbolic transition system from A_{Ex}, the $(\text{check}(), \text{true})$ transition from q_0 to q_π will be the basis for the only error transition.

Checking Components against Interfaces Since we are interested in precise interfaces, correctness means behavioral equivalence between the interface and the component, i.e., equality of sets of safe and error traces. Behavioral equivalence is checked on the composition of the corresponding transition systems, as described below.

For symbolic transition systems $STS^1 = \langle M, x^1, I^1, T^1, T^1_\pi \rangle$ and $STS^2 = \langle M, x^2, I^2, T^2, T^2_\pi \rangle$ over identical methods M and over disjoint sets of variables ($x^1 \cap x^2 = \emptyset$), we define the product as

$$STS^{1 \times 2} = \langle M, x^1 \cup x^2, I \uplus I, T^1 \times T^2, T^1_\pi \times T^2_\pi \rangle$$

with

- $T^{1 \times 2} = \{(m, \varphi_1 \land \varphi_2) : ((m, \varphi_1), (m, \varphi_2)) \in T^1 \times T^2\}$, and

- $T^1_\pi \times T^2_\pi = \{(m, \varphi_1 \land \varphi_2) : ((m, \varphi_1), (m, \varphi_2)) \in (T^1 \setminus T^1_\pi) \times (T^2 \setminus T^2_\pi)\}$.

The composition $STS^{1 \times 2}$ has error traces if and only if symbolic transition systems STS^1 and STS^2 are not behaviorally equivalent.

4 Checking Component Interfaces

As discussed in the previous section, we check correctness of a candidate interface against a component implementation by searching for reachable error transitions.
Algorithm 1 Bounded Exploration

Global: $STS = \langle M, x, I, T, T_\pi \rangle$, depth bound k

1: procedure Expand($((m_1, \varphi_1), \ldots, (m_i, \varphi_i))$)
2: if $i < k$ then
3: for $(m, \varphi) \in T$ do
4: if $spc(I \cdot \varphi_1 \cdot \ldots \cdot \varphi_i \cdot \varphi)$ satisfiable then
5: if $(m, \varphi) \in T_\pi$ then
6: stop with error trace $((m_1, \varphi_1), \ldots, (m_i, \varphi_i), (m, \varphi))$
7: else
8: EXPAND($((m_1, \varphi_1), \ldots, (m_i, \varphi_i), (m, \varphi))$)
9: end if
10: end if
11: end for
12: end if
13: end procedure

4.1 Optimized Exploration through Interpolation

In order to expand fewer states during exploration, we over-approximate states reached by symbolic execution of method path sequences and under-approximate safe states with the help of interpolation. We give an example before presenting the modified exploration of STS: On the component from Figure 2, after $\varphi_{m,4}$, path $\varphi_{c,2}$ of method check (which would lead to an error) is not executable and correspondingly $spc(I \cdot \varphi_{m,1} \cdot \varphi_{c,2})$ is unsatisfiable. We can feed the pair

$$\left[\left(spc(I \cdot \varphi_{m,1} \right), \ wpc(\varphi_{c,2} \cdot true) \right]$$

to an interpolation constraint solver and will receive an interpolant that is implied by the left formula but is inconsistent with $\varphi_{c,2}$, and is only over variables shared by both formulas, e.g., $(0 < x \land x < 20)$. The interpolant over-approximates the states reached after $\varphi_{m,4}$ and under-approximates the safe states from which no immediate error can be triggered.

Figure 3 and Algorithm 2 show how we collect and propagate interpolants during symbolic exploration in order to stop expanding after transitions that
Algorithm 2 Optimized Exploration

Global: \(STS = (M, x, I, \mathcal{T}, T_0) \), bound \(k \), safe states \(\psi_0 = \ldots = \psi_{k-1} = false \)

1: procedure \(ExpandITP(((m_1, \varphi_1), \ldots, (m_i, \varphi_i))) \)
2:
3: if \(i < k \) then
4: if \((\text{spc}(I \cdot \varphi_1 \cdots \varphi_i) \land \neg \psi_i) \) satisfiable \(\triangleright \) Not in Cache?
5: for \((m, \varphi) \in T\) do
6: if \(\text{spc}(I \cdot \varphi_1 \cdots \varphi_i) \) satisfiable then
7: if \((m, \varphi) \in T_\pi \) then
8: stop with error \(((m_1, \varphi_1), \ldots, (m_i, \varphi_i), (m, \varphi)) \)
9: else \(\triangleright \) Update Cache
10: \(\text{ExpandITP}(((m_1, \varphi_1), \ldots, (m_i, \varphi_i), (m, \varphi))) \)
11: end if
12: end for
13: end if
14: if \(i < k - 1 \) then
15: \(\psi_i \leftarrow \psi_i \lor \text{itp}(\text{spc}(I \cdot \varphi_1 \cdots \varphi_i), V_{(m,\varphi) \in (T \backslash T_\pi)} wpc(\varphi \land \neg \psi_{i+1})) \)
16: else
17: \(\psi_i \leftarrow \psi_i \lor \text{itp}(\text{spc}(I \cdot \varphi_1 \cdots \varphi_i), V_{(m,\varphi) \in T_\pi(\varphi)}) \)
18: end if
19: end if
20: end procedure

lead to known safe states: After exploring to depth \(k \) after sequence of transitions \(((m_1, \varphi_1), \ldots, (m_i, \varphi_{k-1})) \) without finding error traces, we use the conditions of the error transitions for computing an interpolant \(I[x] \) that over-approximates \(\text{spc}(I \cdot \varphi_1 \cdots \varphi_{k-1}) \) (cf. bottom left of Figure 3). We propagate interpolants upwards in the tree by computing weakest preconditions for transitions and negated interpolants as indicated in the the figure: if \(\text{spc}(I \cdot \varphi_1 \cdots \varphi_{k-1}) \) and \(\varphi_k \) are inconsistent with interpolant \(I \), then \(\text{spc}(I \cdot \varphi_1 \cdots \varphi_{k-2}) \) is guaranteed to be inconsistent with \(wpc(\varphi_{k-1} \land \neg I) \). Please note that, on one hand, negating \(I \) does not introduce universal quantification since \(I \) only has free variables \(x \). On the other hand, exploration still has to be depth-bounded since safe states are only computed w.r.t. some remaining depth of exploration.

4.2 Symbolic Search

In order to move from (bounded) exploration to search, we need to check if some sequence of paths reaches states that another sequence cannot reach. In our motivational example, e.g., in order to test if \(\text{spc}(\varphi_{m,2}) \models \text{spc}(\varphi_{m,4}) \) as a basis for deciding if exploration can stop or if it has to expand \(\varphi_{m,2} \). This can be done by checking if a model for \(\text{spc}(\varphi_{m,2}) \) exists that is not a model for \(\text{spc}(\varphi_{m,4}) \) and corresponds to checking the satisfiability of formula \(\text{spc}(\varphi_{m,2}) \land \neg \text{spc}(\varphi_{m,4}) \). Negation of \(\text{spc}(\varphi_{m,4}) \) requires universal quantification of variables private to
Fig. 3: Optimizing Symbolic Exploration in PSYCO based on Interpolation. Simplified schematic propagation of interpolants through symbolic exploration tree. In general, unsatisfiable error transitions occur on every level.

\[\text{spec}(\varphi_{m,4}), \text{resulting in test} \]

\[(\forall y_1 \forall p_1 . \neg(y_1 = 0 \land y_1 < 200 \land 0 < p_1 \land p_1 < 20 \land x = y_1 + p)) \land \\
(y_{10} = 0 \land y_{10} < 200 \land 0 \geq p_{11} \land x = y_{10}) \]

In this particular case, it is necessary to explore after \(\text{spec}(\varphi_{m,2}) \): all models of \(\text{spec}(\varphi_{m,2}) \) imply \(x = y_{10} = 0 \) while there is no model for \(\text{spec}(\varphi_{m,4}) \) in which \(x = 0 \). Our symbolic search algorithm is based on checking entailment in this fashion. Algorithm 3 shows the resulting simple symbolic depth-first search algorithm. We used symbolic search for analyzing the depth of a component’s state space in previous work [28]. On the product of component and interface, the algorithm enables PSYCO to discharge interfaces on component implementations.

5 Implementation and Evaluation

This section highlights some details of our implementation and presents results from an evaluation on a small set of benchmark components.

Implementation. The complete PSYCO\(^5\) tool is implemented in Java and available as open source software on github. As pointed out in the introduction, PSYCO integrates different analysis methods with the aim of generating behavioral component interfaces. For active automata learning, PSYCO uses

\(^5\) https://github.com/psycopaths/psyco
Algorithm 3 Symbolic Search

Global: $STS = (M, x, I, T, T_e)$, reached states $\psi_{\text{Reach}} \leftarrow I$

1: procedure $\text{Search}(((m_1, \varphi_1), \ldots, (m_i, \varphi_i)))$
2: for $(m, \varphi) \in T$ do
3: $\psi_{\text{Next}} \leftarrow \text{spc}(I \cdot \varphi_1 \cdot \ldots \cdot \varphi_i \cdot \varphi)$
4: if ψ_{Next} satisfiable then
5: if $(m, \varphi) \in T_e$ then
6: stop with error $((m_1, \varphi_1), \ldots, (m_i, \varphi_i), (m, \varphi))$
7: else
8: if $(\psi_{\text{Next}} \land \forall y \forall p. \neg \psi_{\text{Reach}})$ satisfiable then
9: $\psi_{\text{Reach}} \leftarrow (\psi_{\text{Reach}} \lor \psi_{\text{Next}})$
10: $\text{Search}(((m_1, \varphi_1), \ldots, (m_i, \varphi_i), (m, \varphi)))$
11: end if
12: end if
13: end if
14: end for
15: end procedure

\textsc{LearnLib} [21] and \textsc{AutomataLib}\(^6\), which also provides basic support for different automata transformations and visualization tasks. Internally, \textsc{PSYCO} works on a logic encoding of analyzed components, for which \textsc{JConstraints}\(^7\) is used. The Z3 constraint solver [11] is used in most cases for deciding satisfiability of such encodings. The single exemption is construction of interpolants over linear integer arithmetic for state abstraction, which is done by \textsc{SMTInterpol} [7]. The symbolic search algorithm described in Section 4.2 is implemented in the \textsc{StateExplorer} library.

Finally, \textsc{PSYCO} currently uses \textsc{JDart} [25] for symbolic execution. \textsc{JDart} allows conversion of execution paths through java methods into symbolic transition systems. However since verification and learning is completely language independent in \textsc{PSYCO}, it could be used for components in other languages than \textsc{Java} by replacing \textsc{JDart} with another tool for producing symbolic method summaries.

\textbf{Evaluation.} We evaluate four configurations of \textsc{PSYCO}. As a baseline, we use exhaustive depth-limited exploration as presented in [14]. We compare partial order reduction, as presented in [17], interpolation-based caching, and symbolic search, against the baseline. Our experiments have been conducted on a native 64 bit Linux host. The CPU is an i9-7960X combined with 128 GB RAM. The JVM was provided with 32 GB RAM. We run each experiment three times. We limit \textsc{PSYCO} runs regarding time and memory resources and execute different exhaustive depth checks during the run.

Results are summarized in Table 1. For all approaches, we report limits on runtime, sizes of final alphabet and model, $|\alpha M|$ and $|Q_f|$ respectively, and depth

\(^6\) https://github.com/Learnlib/automatalib
\(^7\) https://github.com/psycopaths/jconstraints
Table 1: Comparison between the existing PSYCO model checks and the newly introduces ones based on interpolation and symbolic search. n/a: no interpolants due to unsupported language features. \(*_1\) This experiment hits the memory limit after 44 minutes. \(*_2\) This experiment hits the memory limit after 23 minutes. \(*_3\) This experiment hits the memory limit after 5 minutes.

\[k_{\text{max}} \] up to which a configuration was able to explore the product of component and model. For symbolic search we additionally report actual runtimes. Since symbolic search is the only method that terminates once the state space is explored completely, we do not impose a time limit - we let it complete or run out of resources. We report the smallest \[k_{\text{max}} \] and (for symbolic search) the maximum runtime from the three runs of an experiment.

The experiments show that interpolation and symbolic search clearly outperform the baseline and partial order reduction: symbolic search terminates within minutes in most cases and interpolation increases \[k_{\text{max}} \] by several orders of magnitude in some cases. However, it is not possible to apply both approaches to all benchmarks. One challenge for search are deep state spaces: The \texttt{AltBit} example, e.g., is implemented using a counter internally that is incremented with each call to this component. \[k_{\text{max}} = 256 \] represents a byte counter, that overflows exactly after 256 increments. While symbolic search runs to completion in this case, it requires 63 minutes. Cycling through deep state spaces becomes intractable on the bigger examples: The \texttt{CEV} experiment, e.g., has a bug that traverses the complete integer domain. When the bug is fixed (in \texttt{CEV V2}), both interpolation and search outperform the baseline approach: while bounded exploration with interpolation is able to explore up to 2.5 times the depth of the baseline (and size of explored space grows exponentially with depth), symbolic search terminates after 13 minutes with a definitive verdict. We can observe something similar for the \texttt{Socket} example. Interpolation reaches one depth less than the \[k_{\text{max}} \] of the search before running out of memory but does this in half the time. Relaxing the memory limit to 64 GB, interpolation outperforms the search in depth for this example in less than 9 min.
Validation. In order to also have an external reference for assessing the efficiency of the implemented extensions, we submitted some of the smaller products of hypothesis model and component to SV-COMP8. Most of the SV-COMP participants in 2017 and 2018 were not able to solve these tasks, which provides some confidence that discharging interfaces on component implementations is not trivial.

6 Conclusions and Future Work

PSYCO is a tool for computing interfaces of components and to this end integrates multiple dynamic and static analysis methods. In this paper, we have presented two methods for discharging conjectured interfaces on component implementations (or vice versa). Bounded checking through symbolic exploration and optimized by interpolation-based caching of explored states is able to reach much greater depth than ordinary bounded exploration. Symbolic search terminates with a definitive verdict in most of our benchmarks. The basis for developing both extensions is a generic logic encoding of component behavior and interface. The main benefits of such an encoding are that (1) it allows to separate development of analysis techniques from generating formal representations, and (2) that it provides a lingua franca in which different analysis methods can exchange information.

The presented work brings us one step closer to the ultimate goals of using interfaces in compositional verification of properties on component-based systems and as contracts for third-party components. There are multiple intriguing directions for future research that are motivated by the work on PSYCO but also pertain to the challenge of integrating different program analysis paradigms in general:

Support for More Languages. Exchanging JDART by a symbolic execution engine for another programming language would allow to use the complete PSYCO approach without any modification on other languages as well. In theory, JDART might be replaced by a symbolic execution engine analyzing assembly or byte code of a virtual machine, enabling formal analysis of binary component realizations in domains that typically do not disclose their source code.

Adequate Representation. We have made the interesting observation when analyzing the main reason for the slow symbolic search performance on the AccMeter example: The logic encoding of states contains many math-heavy constraints. These constraints originate from parts of complex guards, but do not taint state variables. Based on this observation, we suspect that performance of symbolic search can be improved by pruning irrelevant parts of constraints. Moreover, alphabet refinement during learning and product generation before checking interfaces currently produce fairly complex logic constraints. Constraint

8 https://sv-comp.sosy-lab.org/2018/results
simplification likely has a potential for improving performance and it will lead to models that are better comprehensible to human experts. While simplifying constraints may not be solvable efficiently in general, complex constraints arise in specific situations in PSYCO and have well-defined patterns, which may make the problem tractable.

Integration of More Analysis Paradigms. For application domains in which discharging interfaces against implementations is not possible (e.g., for third-party services in Web-applications) we plan to integrate runtime monitoring of interface-conformance on integrated services. This will require, among other things, the integration of a modern learning algorithm (e.g. TTT [20]) that perform well on potentially long sequences observed by a monitor. While LEARN-LIB offers very efficient algorithms, PSYCO currently is based on the classic L^* algorithm. Integrating TTT is also expected to have a positive impact on performance in cases where interfaces can be discharged: Currently, PSYCO spends about 50% of runtime on automata learning and TTT has been demonstrated to achieve substantial savings in runtime over L^* [21].

References

