
Dissecting Widening:

Separating Termination from Information

Graeme Gange1, Jorge A. Navas2, Peter Schachte3, Harald Søndergaard3, and
Peter J. Stuckey1

1 Faculty of Information Technology, Monash University, Melbourne, Australia
2 SRI International, California, USA

3 Computing and Information Systems, The University of Melbourne, Australia

Abstract. Widening ensures or accelerates convergence of a program
analysis, and sometimes contributes a guarantee of soundness that would
otherwise be absent. In this paper we propose a generalised view of
widening, in which widening operates on values that are not necessar-
ily elements of the given abstract domain, although they must be in
a correspondence, the details of which we spell out. We show that the
new view generalizes the traditional view, and that at least three dis-
tinct advantages flow from the generalization. First, it gives a handle on
“compositional safety”, the problem of creating widening operators for
product domains. Second, it adds a degree of flexibility, allowing us to
define variants of widening, such as delayed widening, without resorting
to intrusive surgery on an underlying fixpoint engine. Third, it adds a
degree of robustness, by making it difficult for an analysis implementor
to make certain subtle (syntactic vs semantic) category mistakes. The
paper supports these claims with examples. Our proposal has been im-
plemented in a state-of-the-art abstract interpreter, and we briefly report
on the changes that the revised view necessitated.

1 Introduction

A central problem in abstract interpretation is fixpoint finding: designing meth-
ods to find fixpoints of functions defined over certain mathematical structures,
usually lattices, ideally producing results that are optimal in some sense. Here
we shall assume that we are concerned with finding least fixpoints, or if that
turns out to be difficult, fixpoints that are as small as we can manage.

Least fixpoints are usually found with Kleene’s method, through repeated it-
eration starting from a smallest domain element. However, this iteration may not
terminate, or may converge too slowly to be practical. Widening operators [8]
serve a critical role in this, enforcing termination of Kleene iteration by jump-
ing over infinite ascending chains, or simply accelerating analysis by somehow
skipping long chain segments. Since widening may incur a loss of precision, the
introduction of widening into an abstract interpretation engine becomes an art.
The details of when and how to apply widening touch upon delicate trade-offs
between the speed and the precision of program analysis.

A classical example is the widening operator often used with interval analy-
sis [8,11]. This analysis determines for each program variable x at each program
point, which values x could possibly take, in the form of an interval [lo, hi].

x = 0; y = 0;

while(x < 100)

if(a[x] > 0)

y++; x++;

else

x += 2;

Fig. 1: Code snippet

For the program in Figure 1, an interval analy-
sis can determine that, after the loop body has been
executed 3 times, x is in the interval [3,6] and y is
in [0,3]. Naive interval analysis, however, may not
terminate, as it does not track the correspondence
between x and y: after 100 iterations, it will see fur-
ther (spurious) iterates {x ∈ [0, 100], y ∈ [0, 101]},
etc. Note that, as is common, interval analysis over-
approximates the set of runtime states. In general,
even if the least fixpoint is finitely reachable, it may
take intolerably many iterations to reach.

Cousot and Cousot [8] introduced widening operations to cope with the prob-
lem of naive analysis being slow or non-terminating, and narrowing to improve
on results (post-fixpoints) obtained after widening. Loosely, the idea behind
widening is to introduce means for program analysis to skip long, possibly infi-
nite, chains. For the interval analysis above, we might recognise that y’s lower
bound seems to remain unchanged in successive iterations, whereas its upper
bound changes. Based on this we might move straight to the interval [0,∞] for
y. Alternatively we might look for suggestions for less radical widening, provided
by the surrounding program text, for example in the form of constants used in
loop conditions. (We later discuss some of the variants of widening that have
been proposed.) Narrowing may improve of the result of widening, although it
is no panacea [25]. In this paper we are concerned exclusively with widening.

We propose a definition of widening which generalises the original concept in
a small but critical way. We do not suggest that there is anything wrong with the
original definition(s), and indeed a large number of useful and practical analysis
tools have been built based on the standard view. However, isolating the termi-
nation aspect of widening from the task of finding upper bounds in an abstract
domain has advantages, as we hope to show. By not conflating the two aspects,
our definition of “isolated” widening covers some common constructions which
are not true widenings in the classical sense. At the same time it simplifies cer-
tain implementation tasks, enabling compositional design of widening operators,
and it eliminates certain pitfalls that surround the implementor.

In Section 2 we recapitulate the classical definition, and in Section 3 we
demonstrate the pitfalls alluded to above. Section 4 defines the notion of isolated
widening, and in Section 5 we demonstrate how isolated widenings resolve some
common difficulties. Section 6 reports on our experience with the effort required
to incorporate isolated widening in a generic abstract interpretation framework.
Section 7 discusses related work and puts our proposal in the context of various
forms of widening previously suggested, and Section 8 concludes.

2

2 Kleene iteration with widening

At an appropriate level of abstraction, a static analysis problem can be expressed
as the search for solutions to an equation system

x1

x2

...
xn

=

F1(x1, x2, . . . , xn)
F2(x1, x2, . . . , xn)

...
Fn(x1, x2, . . . , xn)

(1)

This assumes a set Loc = {1, . . . , n} of program locations of interest, with xi ∈ C
representing (or approximating) the set of program states that may be observed
at location i. Fi is the transfer function for location i, specifying how infor-
mation pertaining to that location is computed from the information available
at locations feeding into i. The concrete domain is assumed to be a partially
ordered set (C,⊆), and each Fi : Cn → C is assumed to be monotone, with Cn

ordered component-wise.
We say that xi depends on xj iff the definition of Fi mentions xj . The de-

pendency graph for (1) is the directed graph with Loc as its set of nodes and an
edge from i to j iff xi depends on xj .

Working directly with C is typically impractical, so analysis is performed
on some alternate abstract domain (D,⊑). D is related to C by a monotone
concretisation function γ.4 We say abstract state y abstracts concrete state x

iff x ⊆ γ(y). Similarly, we say abstract transfer function F ♯ abstracts transfer
function F iff for all y1, . . . , yn:

F (γ(y1), . . . , γ(yn)) ⊆ γ(F ♯(y1, . . . , yn)) (2)

This ensures that, though F ♯ may not itself be monotone, it is an upper bound of
the image (under γ) of the monotone F . So long as (2) holds, any (post-)fixpoint
of F ♯ is a sound approximation of the sequence [F (⊥), F 2(⊥), . . .].

Circumstances under which (1) or its abstraction have a solution are well
known. For example, D may be a complete lattice. Even so, simple iteration
techniques such as Kleene iteration may fail to find a solution in finite time, if
D has infinite ascending chains. Or, they may just be too slow to be practical,
in the context of long ascending chains, even if these are finite. To solve this
problem, Cousot and Cousot suggested the use of a widening operator.

Definition 1 (Widening [11]). A widening over domain (D,⊑) is a binary
operator ▽ : D ×D → D such that

– ∀x, y ∈ D : x ⊑ x▽ y

– ∀x, y ∈ D : y ⊑ x▽ y

– For all increasing chains x0 ⊑ x1, . . ., the increasing chain defined by y0 =
x0, . . . , yi+1 = yi ▽xi+1, . . . is not strictly increasing.

4 Many variants of the concrete/abstract correspondence exist [10]. Here we deliber-
ately adopt a relaxed formalisation which imposes few requirements on the domain.

3

Some later formulations of ▽ (e.g., [7]) impose a stricter condition:

For all (ai), the sequence (a▽i) defined as:
a▽0 = a0, a▽n+1 = a▽n ▽an+1 is ultimately stationary

(3)

The idea is to choose, judiciously, a set W ⊆ Loc of widening points, so that
for every cycle C in the dependency graph for (1), W ∩ C 6= ∅. (Such a set W

always exists, but the aim is usually to choose a smallest possible set of widening
points.) For each location i ∈ W , the equation for xi in (1) is replaced by

xi = xi ▽Fi(x1, x2, . . . , xn) (4)

The impact on Kleene iteration is that the sequence of iterates for location i ∈ W

becomes, using (4),

x0
i = ⊥, xk+1

i = xk
i ▽Fi(x

k
1 , x

k
2 , . . . , x

k
n) (5)

rather than x0
i = ⊥, xk+1

i = Fi(x
k
1 , x

k
2 , . . . , x

k
n) using (1). The properties of ▽

ensure the convergence of (5). Equation (5) also clearly shows the different roles
of ▽’s arguments. The left argument holds “historical” information and we shall
refer to it as the widener. The right argument holds “current” information, which
may be weakened as a result of widening; we shall refer to it as the “widenee”.

The widening operator ▽ lacks a property that is shared by other domain op-
erators: ▽ is not required to be monotone. Moreover, unlike other upper bound
operators used in the context of abstract interpretation, ▽ is not normally com-
mutative, nor is it intended to be commutative. This is because its role in the
system of recurrent equations is very different to other operators: Widening
points are the only locations for which xi is defined in terms of its own past
values, in the history of iterations. At all other locations, xi is defined in terms
of the values obtained for neighbouring locations.

In spite of these anomalies, the classical formulation of ▽ leads to a sound
analysis framework. There tends, however, to be a distinct mismatch between the
formulation and the way widenings are constructed and used in practice. This
mismatch manifests in a number of ways, requiring awkward choices in analysis
engines. As we shall see, it occasionally causes unexpected non-termination.

Cousot and Cousot [11] demonstrate ▽’s lack of monotonicity in the context
of interval analysis. Consider the complete lattice of intervals (I,⊑) with

I = {⊥} ∪ {[ℓ, u] | ℓ ∈ Z ∪ {−∞}, u ∈ Z ∪ {∞}, ℓ ≤ u}

The ordering ⊑ is defined by z ⊑ z′ iff lo(z′) ≤ lo(z) ∧ hi(z) ≤ hi(z′), where

lo(z) =

{

∞ if z = ⊥
x if z = [x, y]

hi(z) =

{

−∞ if z = ⊥
y if z = [x, y]

(see Figure 2, ignoring the dashed lines for now).
For this domain, a natural widening operation is ▽I defined as follows:

⊥▽I Y = Y

X ▽I ⊥ = X

[xℓ, xu]▽I [yℓ, yu] = [if yℓ < xℓ then −∞ else xℓ, if xu < yu then ∞ else xu]

4

⊥

· · · [−2,−2] [−1,−1] [0, 0] [1, 1] [2, 2] · · ·

[−2,−1] [−1, 0] [0, 1] [1, 2]

[−2, 0] [−1, 1] [0, 2]

[−∞,−1] [−2, 1] [−1, 2] [1,∞]

[−∞, 0] [−2, 2] [0,∞]

[−∞, 1] [−1,∞]

[−∞,∞]

Fig. 2: The integer interval domain as a Hasse diagram. The role of the red
dashed lines will be made clear in Section 4.

That is, unstable bounds get extrapolated, lower bounds to −∞ and upper
bounds to ∞. To show that ▽ fails to be monotone in the widener, Cousot
and Cousot [11] note that [0, 1] ⊑ [0, 2] but [0, 1]▽I [0, 2] = [0,∞] whereas
[0, 2]▽I [0, 2] = [0, 2]. While this particular ▽ happens to be monotone in its
widenee, the definition of widening does not enforce such monotonicity.

To see that ▽ may lack monotonicity in either argument position, consider
the complete lattice (N∪{∞},⊑), with ⊑ defined x ⊑ y iff x ≤ y∨ y = ∞ (with
≤ being the usual ordering on N). Define widening on this lattice as follows:

x▽ y =

{

max(x, y) if y = 2
∞ otherwise

Here 1 ⊑ 2 but ∞ = 0▽ 1 6⊑ 0▽ 2 = 2, so ▽ is not monotone in the widenee.
Yet ▽ is an upper bound operator, and for every increasing chain x0, x1, . . ., the
increasing chain y0 = x0, yi+1 = yi▽xi+1 stabilises, so the classical requirements
for a widening operation are satisfied.

It is worth highlighting the impact of (3). Definition 1 only guarantees con-
vergence if the sequence of widenees is increasing. If the abstract transformer
F ♯ relating successive iterations is monotone, this property is ensured. However,
the monotonicity of F ♯ can be easily lost in a number of ways:

– If the abstraction D is not a join semi-lattice (e.g. [16, 17, 20]), there is no
least-upper bound, thus successive values at control-flow join points may not
strictly increase [15].

– If F ♯ is not the best abstraction of F , but some relaxation (as is common for
non-linear operations), the sequence of iterates again may be non-monotone.

5

– A special case of the above is use of reduction operations to propagate infor-
mation between multiple domains (discussed in Section 3.1). If the operators
for channeling information between domains are not idempotent, and are not
iterated to a fixpoint, monotonicity is again lost.

In any of these situations, a widening that only satisfies Definition 1 makes no
guarantees of termination. Fortunately, the stabilisation-based widenings com-
monly used for numeric domains all satisfy (3), and for other cases, alternative,
stricter, definitions of widening have been proposed.

3 Problems and pitfalls

To motivate a fresh look at widening, we first discuss some irregular properties of
widening: an absence of compositionality, a lack of flexibility, and a certain lack
of robustness. In Section 5 we return to these aspects, to show how a different
view of widening can remove or mitigate some drawbacks.

3.1 Problems of compositionality

Abstract interpretation makes use of a number of domain product constructions.
The reduced product of abstract domains [5,9] is a powerful concept, but difficult
to implement in practice. Granger products [21] are a frequent compromise,
equipping a pair of domains with ‘reduction’ operators to propagate information
between them. In essence, both approaches take the quotient of D1 ×D2 under
some equivalence relation ≡. However, it is not in general safe to use widenings
for D1 and D2 directly as a widening for (D1 ×D2)/≡.

Example 1. Consider D1 = D2 = N ∪ {∞}, with the usual ordering ≤, and
define:

w▽e x =

w if x ≤ w

x if x > w, w is even, and x is odd
x+ 1 if x > w, w is even, and x is even
∞ otherwise

w▽o x =

w if x ≤ w

x if x > w, w is odd, and x is even
x+ 1 if x > w, w is odd, and x is odd
∞ otherwise

Note that ▽e always converges: if the first value is even, the second iterate will
become odd, after which the third increasing step will jump to ∞. ▽o converges
by analogous reasoning.

In the reduced product D1 ×D2, the meaning of (x, y) is simply min(x, y).
Consider what happens to the strictly increasing sequence 0, 1, 2, . . .

Sequence to stabilise: 0 1 2 3 4 . . .

Result of (▽e,▽o) at iteration i: (0, 0) (1,∞) (∞, 2) (3,∞) (∞, 4) . . .

Reduced element at iteration i: 0 1 2 3 4 . . .

6

When we map the two individual components back onto the quotient class, we
regain information that was discarded by the previous widening. As a result,
stabilisation is lost. ⊓⊔

Example 1 shows that traditional widening does not guarantee compositional
stabilisation. Each of the widening operators in the example provides stabilisa-
tion, one in D1, the other in D2, and yet their natural composition does not
provide stabilisation in the reduced product of D1 and D2. Each has the effect
of undermining the other.

The lack of compositionality manifests itself in other ways.

Example 2. Widening with thresholds [24,25] is a common strategy for avoiding
precision loss in widening. However, implementing widening with thresholds for a
large number of numeric abstract domains is tedious, and it would be preferable
to utilise an existing widening operator. Indeed, in Crab [14], a generic version
of widening with thresholds was previously implemented as follows:

s▽T
A t =
(s▽A t) ⊓A (from-interval(to-interval(s)▽T

I to-interval(t)))
(6)

That is, given an arbitrary numerical abstract domain A, extract interval ap-
proximations from s, t ∈ A, using the function to-interval that converts from
A to I. Then, apply (non-threshold) widening to the A-operands, apply inter-
val widening with thresholds to the I-operands, convert from I to A using the
function from-interval, and take the meet of the two results.

This sequence of operations ought to be innocuous. With the assumption that
widening is applied in an unbroken sequence, and non-widening steps are not
allowed after widening, the suggested solution should be safe: ▽T

I can be safely
interleaved with increasing functions, so the interval component will eventually
converge. And since the resulting intervals are stable, adding them back into
s▽A t should have no effect. Nevertheless, this widening strategy would—on
very rare occasions—cause non-termination.5 ⊓⊔

It turns out that the problem in Example 2 is due to the call to-interval(s),
where we find the interval approximation of a previous iterate. To compute the
tightest interval approximation of s, to-interval must normalise s, that is,
explicate the transitive closure of its representation. Not knowing that s is ‘really’
a widener, to-interval helpfully modifies s in place, inadvertently breaking
the termination conditions. There is nothing wrong with (6), read declaratively,
and it is hard to blame the implementation of to-interval. The root cause is
that the termination invariant required by widening relies on invisible properties
which are not captured at the semantic (or API) level. What was intended as a
syntactic object (a set of constraints) is treated as a semantic object (a set of
models). Clearly it would be nice to have a “widening API” that prevents this
kind of category confusion.

5 The bug was fixed on July 1st, 2018 in commit https://github.com/seahorn/crab/
commit/72ed05690bc2bbee19141f5513cb6a8e8ab3ce9a.

7

3.2 Flexibility: Handling variants of widening

Widenings frequently achieve convergence by retaining only ‘stable’ information,
and discarding everything else. This is excellent for attaining fast termination,
but risks throwing away the properties we are attempting to infer.

The threshold widening discussed above is one of many different approaches
to avoid excessive information loss in widening. Another common strategy to
retain some information is delayed widening [3]: perform a bounded number of
initial steps using join (⊔)—in the hope of obtaining stable invariants—before
eventually resorting to widening.

These are simple and effective strategies, but implementing variants of widen-
ing is surprisingly messy [12]. For example, for delayed widening we need to track
how many times each widening point has been processed, but where does this
count belong? A common strategy is to remove this decision from the domain en-
tirely, relying on the analysis engine to decide when to switch from “join” mode
to “widen” mode. Alternatively, one can place an iteration counter somewhere
with shared visibility. In any case, the traditional solutions involve disruptive
changes to an underlying fixpoint engine, or a baroque redesign of abstract do-
mains. A cleaner and less intrusive solution would be desirable.

3.3 Problems of fragility: Termination

Termination problems similar to that of Example 2 are easily provoked. Miné [27,
28] observed a related problem with his weakly relational domains: The imple-
mentation of these domains rely on transitive closure operations to make implicit
binary relations explicit at certain points. For example, a set {x ≤ y, y ≤ z} of
constraints may be normalised as {x ≤ y, y ≤ z, x ≤ z}. However, applying
transitive closure to the post-widening state can result in non-termination, even
though the set of models is unchanged. The root cause of the trouble [27, 28]
(and in Example 2) is that the domain conflates two views of an abstract state:
the lattice operations and abstract transformers see states as semantic objects,
so two states with identical models are equivalent; closure is, viewed from that
angle, a no-op. Widening, however, is non-semantic in its left argument: Once
some constraint is discarded as unstable, it must not re-appear in future iter-
ations. If transitive closure is applied between widening steps, we may re-infer
relaxed forms of the discarded invariants, which may appear stable in the next
iteration, breaking the invariant we need for termination.

Example 3. Miné [27] first identified the problem and gave a concrete example.
Consider the sequence of iterates pi = {|y−x| ≤ i+1, |z−x| ≤ i+1, |z−y| ≤ 1}
for i = 0, 1, 2, With the standard representation of difference constraints as
directed graphs, we can depict the sequence as in the bottom row of Figure 3.
To maintain precision, it is important to apply a transitive closure operation to
constraint sets, to detect implied constraints (we say we “normalise” constraints).
Now starting a sequence ω0, ω1, . . . from ω0 = {|y − x| ≤ 1, |z − y| ≤ 1} is fine,
except we run into trouble if we normalise the results of widening. Normalising

8

x

y z

1 2

1

x

y z

1 2

1

x

y z

3 2

1

x

y z

3 4

1 . . .
ω

∗

0 ω1 = (ω∗

0 ▽ p0)
∗

ω2 = (ω1 ▽ p1)
∗

ω3 = (ω2 ▽ p2)
∗

x

y z

1 1

1

x

y z

2 2

1

x

y z

3 3

1

x

y z

4 4

1 . . .
p0 p1 p2 p3

Fig. 3: An example of a divergent sequence of difference constraints, adapted
from [27]. At each step, the edges between x and either y or z are discarded, but
closure then recreates weaker relations (shown dashed), which are stable during
the next iteration.

ω0 yields ω∗
0 = {|y − x| ≤ 1, |z − y| ≤ 1, |z − y| ≤ 2}. Under normalisation, the

remainder of the widening sequence is shown in the top row of Figure 3. For
example, ω2 comes about as the closure of ω1 ▽ p1 = {|z − y| ≤ 1, |z − x| ≤ 2},
with closure adding the constraint |y − x| ≤ 3. As can be seen, the widening
sequence will not stabilise. The problem arises because closure—which makes no
semantic difference—restores some constraints discarded by widening, breaking
the very property that termination relied on. ⊓⊔

In Section 5 we return to the challenges discussed in this section. But first
we introduce a different view of widening.

4 Isolated widening

In the classical treatment of abstract interpretation, the widening iterates inhabit
the same type as our abstract domain. But as observed above, this view can mis-
lead the implementor of an abstract domain. For the implementor it is critically
important to isolate the effects of a semantic widenee from the non-semantic

widener. As we show in Section 5.1, this isolation also aids compositionality.
To make the two aspects of widening transparent, we let the different roles

of the widener and widenee be reflected in ▽’s argument types. That is, we relax
the requirement that both arguments are of type D for some abstract domain
D. Instead, we take the widener to be an inhabitant of some partially ordered
set (W,�) (not necessarily a lattice) which has the “ascending chain” property.

Definition 2 (Acc-poset). A partially ordered set (S,≤) satisfies the ascend-
ing chain condition iff, for every sequence s0 ≤ s1 ≤ s2 ≤ . . . of S, there is some
k ∈ N such that sk = sk+1 = sk+2 = We refer to such a set as an acc-poset.

9

Example 4. Consider again the interval domain (I,⊑) from Section 2. The full
and dotted lines in Figure 2 show the lattice as a Hasse diagram. The natural
widening operation ▽I defined in Section 2 is not monotone. However, consider
an alternative ordering �, defined by: ⊥ � d � d for all d ∈ I, and

[a, b] � [c, d] iff (c = −∞∧ d ∈ {b,∞}) ∨ (d = ∞∧ c ∈ {−∞, a})

This results in an order illustrated in Figure 2 by considering edges that transi-
tively cross a red dashed line. Nodes within one red bordered region are pairwise
incomparable. Clearly � is a coarsening of ⊑: we have i1 � i2 ⇒ i1 ⊑ i2, but �
makes certain elements of I incomparable which were comparable under ⊑.

Viewed with respect to �, ▽I satisfies an interesting property:

w � w′ ∧ x⊑x′ ⇒ w▽I x � w′
▽I x

′.

That is, ▽I is monotone after all, but with respect to different orderings of its
left and right operands. But though � induces a lattice, ▽I does not coincide
with the join operation over (I,�), even though that operation does exist. In
fact, ▽I is not an upper bound operation at all under �, only under ⊑. For
example, [−10, 10]▽I [0, 3] = [−10, 10], but [0, 3] 6� [−10, 10]. ⊓⊔

Example 4 provides motivation for the introduction of an isolated widening
domain W, since the key to widening is really an independent acc-poset. The set
W is related to a given abstract domain D, as specified in Definition 3 below. It
is equipped with three operations:

reflect : D → W reify : W → D ▽▽ : W×D → W

Here, reflect lifts an abstract state to initialize an ascending sequence, ▽▽ com-
putes successive (widening) steps in our (finite) ascending chain, and reify maps
the current iterate back onto the abstract domain, in preparation for computing
the next step in the sequence.

Definition 3 (Isolated widening). Let (D,⊑) be an abstraction of poset
(C,⊆) given by concretisation γ. The quintuple 〈W,�, reflect, reify ,▽▽〉 is an
isolated widening (I-widening) for (D,⊑) iff (W,�) is an acc-poset and the op-
erators reflect : D → W, reify : W → D, and ▽▽ : W×D → W, satisfy:

∀x ∈ D. γ(x) ⊆ γ(reify(reflect(x))) (7)

∀w ∈ W, x ∈ D. w � (w▽▽x) (8)

∀w ∈ W, x ∈ D. γ(x) ⊆ γ(reify(w▽▽x)) (9)

Equations (7)–(9) generalise the corresponding conditions for classical widenings.
Indeed, if W = D and reflect(x) = reify(x) = x then (7) is a tautology, and (8)
and (9) ensure ▽▽ is an upper bound operator. We do not require the sets W and
D to be identical, however. And, importantly, the left argument (the widener)
and right argument (widenee) are generally subject to different orderings.

10

Theorem 1. Consider abstraction (D,⊑) of domain (C,⊆) given by γ : D → C.
Let 〈W,�, reflect, reify ,▽▽〉 be an I-widening for lattice (D,⊑). For every x ∈ D,
monotone function f : C → C and abstraction f ♯ : D → D of f , the sequence
given by

w0 = reflect(x)
wi = wi−1 ▽▽ f ♯(reify(wi−1))

stabilises after k steps for some k ∈ N, and fn(γ(x))⊑ γ(reify(wk)) for all n ∈ N.

Proof. Stabilisation follows directly from (8), andW having only finite ascending
chains. At each iteration, either wi = wi−1 (in which case wi ▽▽ f(reify(wi)) = wi,
so the sequence has stabilised), or else wi ≻ wi−1. The latter may happen only
finitely many times, so the sequence stabilises after finitely many steps.

Mathematical induction shows the final result is a post-fixpoint of f . Assume
stabilisation happened at iteration k. We wish to show that, for every i ∈ N,
f i(γ(x)) ⊆ γ(reify(wi)). From the outset, for i = 0, we have wi = reflect(x), so
by (7) we have γ(x) ⊆ γ(reify(wi)).

Now assume f i−1(γ(x))⊑ γ(reify(wi−1)). By (9), we have:

γ(f ♯(reify(wi−1)))⊑ γ(reify(wi−1 ▽▽ f(reify(wi−1)))) = γ(reify(wi)).

As f is monotone, we have f i(γ(x)) = f(f i−1(γ(x))) ⊆ f(γ(reify(wi−1))). And
as f ♯ abstracts f , and γ is monotone, we have:

f(γ(reify(wi−1))) ⊆ γ(f ♯(reify(wi−1))) ⊆ γ(reify(wi)).

Hence f i(γ(x)) ⊆ γ(reify(wi)) for all i ≥ 0. Thus γ(reify(wk)) is a post-fixpoint
of f . ⊓⊔

Theorem 2. Consider a widening (in the sense of Definition 1) ▽ on poset
(D,⊑) abstracting (C,⊆), which satisfies (3). Let id : D → D be the identity
function, and let � be the relation given by:

u � v iff u = v ∨ ∃x. u▽x = v,

with �∗ its transitive closure. Then 〈D,�∗, id, id,▽〉 is an I-widening for (D,⊑).

Proof. �∗ is reflexive and transitive by construction. Consider u, v ∈ D such
that u �∗ v and v �∗ u. So either u = v, or ∃x1, . . . , xn. v = u▽x1 ▽ . . .▽xn,
and ∃y1 . . . , ym. u = v▽ y1 ▽ . . .▽ ym. Since ▽ is an upper bound operation in
(D,⊑), we have v⊑u and u⊑ v. Thus u = v. Therefore (D,�∗) is a partially
ordered set.

Assume (D,�∗) has some infinite ascending chain. Then (D,�) must simi-
larly have an infinite ascending chain v0, v1, From the definition of �, there
must then be a sequence x1, . . . ∈ D such that vi = vi−1 ▽xi. But (3) guarantees
there is no such sequence. Hence (D,�∗) has no infinite ascending chain, that
is, it is an acc-poset.

Finally we show that (7)–(9) hold for 〈D,�∗, id, id,▽〉. Equation (7) follows
directly, as x⊑ id(id(x)) = x. The relation � is defined such that w � (w▽x)

11

for all x, and �⊆�∗, so (8) also holds. Equation (9) follows from the second
condition of Definition 1, which requires x⊑w▽x. As γ is monotone, we have
γ(x) ⊆ γ(w▽x).

We conclude that 〈D,�∗, id, id,▽〉 is an I-widening for 〈D,⊑〉. ⊓⊔

Theorem 2 states that each classical widening [11] induces an isolated widen-
ing. The I-widening derived from an arbitrary classical widening is not necessarily
monotone. Indeed, for arbitrary fixed reflect , reify , and �, there may be no best

widening (though if (W,�) has a unique greatest element ⊤, there is always
some monotone widening, namely w▽▽x = ⊤).

5 Properties of isolated widening

We now return to the problems and pitfalls identified in Section 3. The aim is to
show how the separation of concerns that was proposed in Section 4 can resolve
some of the classical difficulties surrounding widening: lack of compositionality

(as seen in product widening), rigidity (as seen in the difficulty of extending the
definition of widening to cover variants such as delayed and threshold widening),
and fragility (as seen in well-known implementation pitfalls).

5.1 Compositionality: Domain products and widening

Example 1 exposed the dangers surrounding synthesis of widening operators for
product domains. We now show that I-widening provides compositional stabil-
isation, also in the presence of reduction. We characterise direct, Granger, and
reduced products as quotients of a direct product under a reduction operation.

Definition 4 (Product with reduction). Let (C,⊆) be a meet semi-lattice6

with abstractions (D1,⊑1) and (D2,⊑2) given by γ1 and γ2. Let D1×2 = D1×D2.
A function ρi : D1×2 → Di is a reduction operator if it satisfies:

ρi(y1, y2) ⊑i yi i ∈ {1, 2} (10)

γ1×2(y1, y2) ⊑ γi(ρi(y1, y2)) i ∈ {1, 2} (11)

Equation (10) ensures ρi are decreasing, and (11) ensures ρi do not discard any
sound concrete states.

We use ρ to denote the pointwise application of (ρ1, ρ2):

ρ〈y1, y2〉 = 〈ρ1〈y1, y2〉, ρ2〈y1, y2〉〉.

From (10) and (11), we conclude:

γ1×2(ρ(x)) = γ1×2(x) (12)

A product with reduction is the quotient class D1×2|ρ.

6 The requirement for a meet semi-lattice is merely so γ1×2 is expressible. With a
different formalisation (taking γ as a relation γ ⊆ C × D), we may take (D,⊑) as a
poset, and replace (11) by (y1, x) ∈ γ1 ∧ (y2, x) ∈ γ2 ⇒ (ρi(〈y1, y2〉), x) ∈ γi.

12

In this view, ρ = id yields the direct product, and the reduced product is obtained
with the tightest possible ρ. The continuum of Granger products sit between.

Theorem 3. Consider domain (C,⊆) with abstractions (D1,⊑1), (D2,⊑2) given
by γ1, γ2 resp., and reduction operator ρ inducing domain (D1×2|ρ,⊑1×2|ρ).

Let 〈W1,�1, reflect1, reify1,▽▽1〉 be an I-widening for poset (D1,⊑1) and let
〈W2,�2, reflect2, reify2,▽▽2〉 be an I-widening for poset (D2,⊑2). Define

reflect〈x1, x2〉 = 〈reflect1(x1), reflect2(x2)〉
reify×〈w1, w2〉 = 〈reify1(w1), reify2(w2)〉
reify〈w1, w2〉 = ρ(reify×〈w1, w2〉)

〈w1, w2〉▽▽〈x1, x2〉 = 〈w1 ▽▽1 x1, w2 ▽▽2 x2〉

Then 〈W1×W2,�, reflect , reify ,▽▽〉 is an I-widening for domain (D1×2|ρ,⊑♯1×2|ρ
)

with
(x1, x2) ⊑ (x′

1, x
′
2) iff x1 ⊑1 x′

1 ∧ x2 ⊑2 x′
2

(w1, w2) � (w′
1, w

′
2) iff w1 �1 w′

1 ∧ w2 �2 w′
2

Proof. The fact that 〈W1 × W2,�〉 has no infinite ascending chains follows
straightforwardly from this property of �1 and �2.

We now show conditions (7–9) hold. By (7) for W1, W2 and (12) we have
γ1×2(x)⊑ γ1×2(reify×(x)) = γ1×2(ρ(reify×(x))) = γ1×2(reify(x)), so (7) holds.
Equation (8) follows from the definitions of ▽▽ and �. For (9), (12) the corre-
sponding condition of W1 and W2 we have

γ1×2(x)⊑ γ1×2(reify×(w▽x)) = γ1×2(ρ(reify×(w▽x))) = γ1×2(reify(w▽x)).

Thus (9) holds. We conclude that 〈W1×W2,�, reflect , reify ,▽▽〉 is an I-widening
for domain (D1×2|ρ,⊆1×2|ρ). ⊓⊔

As a special case of Theorem 3, we may safely combine multiple widenings
for the same domain, in the same manner. Indeed, recall our troublesome con-
struction from Example 2. Using reflect and reify , this becomes perfectly safe:
W stores the stable relations and interval properties separately, and they are
combined only upon calls to reify . The safe replacement for (6) becomes:

reflectAI(s) = 〈reflectA(s), reflectI(to-interval(s))〉
reifyAI(〈r, i〉) = reifyA(r)⊓ reifyA(from-interval(reifyI(i)))

〈r, i〉▽▽AI s = 〈r▽A s, i▽T
I to-interval(s)〉

5.2 Flexibility: Variations of widening

Another advantage of capturing termination aspects of widening via a separate
domain W is that it becomes possible to define variants of widening without any
need for surgery to an underlying fixpoint engine. We now show how delayed
widening can be implemented generically.

We simply define a widening combinator, which lifts an isolated widening W

to a new isolated widening kW for some given k, as follows. The values in the

13

widening domain are from a discriminated union with constructors U : W → kW

and P : (N×D) → kW. Let ⊔ be any upper bound operator on D (for lattices,
this will be the least upper bound). The operations are defined by:

reflectkW(s) = P (k, s)
reifykW(P (l, s)) = s

reifykW(U(w)) = reifyW(w)

P (0, s)▽▽kW s′ = U(reflect
W
(s⊔ s′))

P (l, s)▽▽kW s′ = P (l − 1, s⊔ s′), l > 0
U(w)▽▽kW s′ = U(w▽▽W s′)

The ordering �−
kW is defined as:

P (l, s) �−
kW P (l′, s′) ⇔ (l = l′ ∧ s = s′) ∨ (l > l′ ∧ s ⊑ s′)

P (l, s) �−
kW U(w) ⇔ γ(s) ⊆ γ(reifyW(w))

U(w) �−
kW U(w′) ⇔ w �W w′

U(w) �−
kW P (k, s) ⇔ false

The ordering of the new domain �kW is defined as the transitive closure of �−
kW.

Proposition 1. Consider domain (C,⊆) with abstraction (D,⊑) equipped with
upper bound operator ⊔, and let 〈W,�W, reflectW, reifyW,▽▽W〉 be an I-widening
for (D,⊑). Then 〈kW,�kW, reflectkW, reifykW,▽▽kW〉 is an I-widening for (D,⊑).

Proof. We show that �kW is a partial order. Reflexivity follows immediately
from the definition of �−

kW, specifically the first and third rules.
To see that �kW is anti-symmetric, assume x �kW y and y �kW x. Clearly

x and y must have the same constructor or one condition cannot hold. If x =
P (l, s) and y = P (l′, s′) then since x �kW y there is a finite chain of possibly
different values x = x0 = P (l0, s0), x1 = P (l1, s1), . . . , xn = P (ln, sn) = y where
P (li, si) �

−
kW P (li+1, si+1) for each i ∈ 0..n− 1. The chain is finite since to be

different each l value must be different and this is bounded by k. Now (li =
li+1∧si = si+1)∨ (li > li+1∧si ⊑ si+1). Similarly since y �kW x there is a finite
chain of possibly different values y = y0 = P (l′0, s

′
0), y1 = P (l′1, s

′
1), . . . , ym =

P (l′m, s′m) = x where P (l′i, s
′
i) �−

kW P (l′i+1, s
′
i+1) for each i ∈ 0..m− 1, and

(l′i = l′i+1 ∧ s′i = s′i+1) ∨ (l′i > l′i+1 ∧ s′i ⊑ s′i+1). The only solution to these
conditions is that for all i ∈ 0..n, j ∈ 0..m we have that li = l′j ∧ si = s′j .
So x = y. If x = U(w) and u = U(w′) then U(w) �kW U(w′) and since �W

is already transitively closed, equivalently U(w) �−
kW U(w′) thus w �W w′.

Similarly w′ �W w. Hence w = w′. In either case, x = y, establishing anti-
symmetry.

�kW is transitive by construction.
We show the required properties hold for reflectkW, reifykW, and ▽▽kW.

Clearly x = reifykW(reflectkW(x)) by definition, guaranteeing (7) holds.
To show (8) w �kW w▽▽x and (9) γ(x) ⊆ γ(reifykW(w▽▽kW x)) we examine

the different cases for w: If w = P (0, s) then w▽▽kW x = U(reflectW(s⊔x)).
From (7), γ(s) ⊆ γ(s⊔x) ⊆ γ(reify

W
(reflect

W
(s⊔x))) = γ(reifykWw▽▽kW x),

so we have P (0, s) �−
kW U(w▽▽kW x). Similarly we have reify(w) = s⊑ s⊔x. By

monotonicity of γ, together with (7), we have

γ(reify(w)) ⊆ γ(s⊔x) ⊆ γ(reify
W
(reflect

W
(s⊔x))) = γ(reify(w▽▽kW x)).

14

If w = P (l, s) for l > 0 then w▽▽kW x = P (l − 1, s⊔x). We have l − 1 <

l ∧ s⊑ s ⊔ x, so w �−
kW w▽▽kW x. And γ is monotone, so γ(x) ⊆ γ(s⊔x) =

γ(reify(w▽▽kW x)). Finally, if w = U(w′) then w▽▽kW x = U(w▽▽W x). The
result follows since w′ �W w▽▽W x and γ(x) ⊏ γ(reifyW(w▽▽W x)).

Equations (8) and (9) hold for all cases, thus all conditions for an I-widening
are satisfied. ⊓⊔

The I-widening framework makes it easy to define delayed widening because
it allows the separation of widening control from whatever abstract domain we
may be using. Other variations of delayed widening are also simple to encode.
For example, we can define P (l, s)▽▽kW s′ = P (l, s) when s⊔ s′ = s which may
lead to more accurate widening.

5.3 Convergence

Recall the problem of non-convergent DBMs (or octagons), outlined in Sec-
tion 3.3. The underlying problem is a subtle difference in the interpretation of a
state between the (normal) domain operations and the widening operation.

Viewed in terms of ⊑ and �, it is clear where things go astray in Example 3.
Computing ω∗

0 ▽ p0 yields the set of constraints ω = {|z − y| ≤ 1, |y − x| ≤ 1}.
This is safe, as ω∗

0 � ω, and p0 ⊑ reify(ω). But performing transitive closure on
ω yields a result ω1 = ω∪{|z−x| ≤ 2}. And although ω∗

1 is still an upper bound
of ω∗

0 and p0 with respect to ⊑, ω∗
0 6� ω1—so the ascending chain of wideners is

broken.
The normal lattice operators view Octagons as the quotient class of sets of oc-

tagon constraints under entailment: two sets of constraints are equivalent iff they
have the same set of models. The termination argument views Octagon states
as sets of constraints: at each iteration, the number of constraints decreases, so
the iteration process terminates. These are, very subtly, different sets, which are
equipped with different partial orders, let us call them ⊑8 and �8, defined by

S⊑8 T iff ∀cT∈T . S ⇒ cT
S �8 T iff ∀cT∈T . cT ∈ S

Viewing widening through this lens, it becomes clear what goes wrong: The
normalization operator (which performs transitive closure) is semantically (that
is, with respect to ⊑8) a no-op—it is merely the identity function. But with
respect to �8, closure moves downwards. So composing ▽ and closure is no
longer necessarily an upper bound operation with respect to �8.

Formulated as an isolated widening, these sets are kept distinct. Let ≡8 be the
equivalence relation induced by ⊑8 – that is, S ≡8 T ⇔ S⊑8 T ∧T ⊑8 S, and let
=8 be the equivalence relation similarly induced by �8. Then domain elements
occupy the quotient class O/≡8

, where O is the set of Octagon constraints. In this
domain, transitive closure is indeed safe. But widening operands are members
of O/=8

, which is simply not equipped with a closure operator.
With isolated widening, we cannot make this mistake: transitive closure is

defined on the domain of abstract states and cannot be applied to a widener
(which acts on a different set).

15

6 Implementation

We have implemented isolated widening for Crab [22], a parametric framework
for building abstract interpreters. Crab is written in C++ and provides a front-
end for analyzing LLVM bitcode. We have used Crab to evaluate the use of
isolated widening on a large number of C programs from SV-COMP 2019. Our
main aim with the implementation has been to gauge the extent to which isolated
widening requires a larger implementation effort than the alternatives.

We modified the Crab fixpoint iterator [1] in order to call reflect , reify , and
▽▽. This required only three new lines of C++ code. Before a new cycle in the
weak topological ordering (wto) [4] of the control-flow graph (CFG) is analyzed,
the new code calls reflect . Then, the cycle is analyzed recursively (i.e., analyzing
other nested cycles) until a fixpoint is reached. Before a new fixpoint iteration
starts, the new code calls reify . Finally, the standard call to Cousot’s widening
was replaced with a call to ▽▽. In addition, we extended each Crab abstract do-
main D to implement the trivial isolated widening 〈D,�∗, id, id,▽〉. This required
10 lines of C++ code since all domains share the same implementation.

For proofs of concept, we implemented (a) delayed widening and (b) the
reduced product of an arbitrary numerical domain with intervals as I-widening.
Recall that the reduction with intervals was motivated by a desire to exploit
widening-with-thresholds from the interval domain, so as to implement threshold
widening for a number of numerical abstract domains, with less effort. Regarding
(a), Crab already implemented delayed widening on top of the fixpoint iterator.
We replaced that code with the isolated widening defined in Section 5.2. The
effort was minimal and it did not add more lines of C++ code. For (b), we needed
to add more code although the amount was still relatively small (around 130 lines
of C++ code).

Crab provides standard numerical domains such as Interval, Zone, Octagon,
and Polyhedra. Since numerical domains are typically insufficient to prove non-
trivial properties, Crab allows combining numerical domains as reduced prod-
ucts. Moreover, Crab provides array domains which are implemented as functor
domains whose parameters can be arbitrary abstract domains.

With this in mind, we first implemented the I-widening described in Sec-
tion 5.1. The implementation is parametric on the particular numerical domain,
and took some 50 lines of code. We also implemented, in 40 lines, an I-widening
for the reduced product of two numerical domains and a numerical domain with
a finite lattice domain (used to track Boolean variables). Finally, we implemented
an I-widening for the array smashing domain, another 40 lines of C++ code.

To test the correctness of the implementation, we compared it against the old
implementation, using 2736 programs from the SV-COMP 2019 competition (the
categories ReachSafetyControlFlow, ReachSafetyLoops, and System Device-

DriversLinux64). We noted that the new implementation of delayed widening
did not affect precision of analysis, nor analysis time.

In conclusion, the implementation of isolated widening in an existing abstract
interpreter has been almost effortless.

16

7 Related work

The concept of widening in abstract interpretation is almost as old as abstract
interpretation itself [8]. Its essential role in both the theory and practice of
program analysis was clarified by Cousot and Cousot [11]. While it was initially
designed as a tool to ensure or speed up the discovery of fixpoints for monotone

functions, it has utility beyond that; non-monotone analyses have been proposed
that rely on widening to escape iteration sequences that may be looping rather
than ascending [15].

We have assumed the definition of (classical) widening given by Cousot and
Cousot [11]. Many definitions found in the literature differ in subtle ways, and
not all are strictly equivalent. For example, from the earliest work on widening,
P. and R. Cousot pointed out that it is not necessary to restrict widening to be
a single mechanism; widening could involve the use of a succession of different
mechanisms. Cousot [6] thus views a widening operator as having type N →
(D ×D) → D, to allow for such “dynamic”, as well as delayed, widening.

Bourdoncle [4] analysed the use of chaotic iteration with widening and ex-
plored how iteration strategy affects both precision and overall efficiency of anal-
ysis. A central problem (not discussed in this paper) is how to select a good set
W of widening points. Bourdoncle [4] introduced weak topological orderings and
demonstrated their utility in the choice of W .

Much of the research on widening has been in the context of relational or
weakly-relational abstract domains. Widening plays a central role in the seminal
work on polyhedral analysis [13]. The implementation problems caused by the
non-semantic nature of the left (widener) were previously observed in work on
Zones, Octagons and convex polyhedra [2, 27, 28], although a general solution
has not been suggested, to our knowledge.

Delayed widening [3] is an obvious approach to limiting the loss of precision
incurred by widening. Widening is delayed for a fixed number k of iterations,
so that the widening operator associated with a widening point is treated as a
join for k steps. More sophisticated delay can be introduced by taking syntactic
aspects of the given program into account. Halbwachs, Proy and Roumanoff [24]
proposed such a widening “up to” scheme, which has since been extended and
dubbed “widening with thresholds” [25]. Simon and King [29] propose a gener-
alisation (“widening with landmarks”) in the context of polyhedral analysis.

Widening/narrowing does not always deal well with complex program struc-
ture, including nested loops. Much work has focused on improved precision of
analysis, at a reasonable cost of overhead. Our particular perspective on widen-
ing (and the implementation discipline it enforces) does not preclude the use of
a number of these proposed widening-related techniques. This includes “looka-
head widening” and similar “analysis guiding” techniques for loops that exhibit
multi-phase behaviour [18, 19], widening with landmarks [29], and post-fixpoint
improvements such as those suggested by Halbwachs and Henry [23].

A work that is close to ours as far as motivation is concerned, is Mihaila et
al.’s recasting of “widening as abstract domain” [26]. The authors also seek a
systematic, modular approach to composing abstract domains in the presence of

17

widening, so that ad hoc design or modifications of a fixpoint engine is avoided.
They show how different widening strategies can be built into abstract domains,
including delayed widening, widening with thresholds, and lookahead widening.
The proposed machinery, however, is very different to ours. It assumes that a
program location ℓ is a widening point if and only if it is the target of a back-edge

in a control flow graph, in which case ℓ’s join is replaced by a widening operation.
Our approach does not restrict the choice of widening points. Rather than force
different widening techniques into a given abstract domain, our proposal is to
separate syntactic and semantic aspects of analysis, by clearly distinguishing the
roles of the (syntactic) widener and the (semantic) widenee.

8 Conclusion

We have proposed an alternative approach to accelerating fixpoint finding in ab-
stract interpretation. The approach, which we have called isolated widening, is a
generalisation of the classical widening technique, in that any classical widening
can be trivially translated to an I-widening, but the converse does not hold. This
generality allows isolated widening to retain any information about the history
of widening at a program point, beyond simply the previous and next abstract
states, allowing for more flexible widenings than the traditional approach sup-
ports, such as delayed widening, all while isolating any added information from
the abstract domain itself.

Importantly, this isolation also sidesteps certain pitfalls that arise with clas-
sical widenings. For example, it clarifies the distinction between the semantics of
an abstract domain, such as Octagons, from the syntactic view of the represen-
tation used during widening. Isolated widening makes this distinction explicit,
preserving the semantic view in the abstract domain, and transforming the syn-
tactic view into its own view with a distinct semantics in the widening domain.
Crucially, this approach keeps the widening information in its own representa-
tion rather than immediately transforming it to the abstract domain, avoiding
the accidental strengthening of abstract states that Miné and others have ob-
served to undo the effect of widening and cause nontermination of analysis [28].
Additionally, we have shown that I-widenings are compositional, unlike classical
widenings, simplifying the implementation of product domains.

We have implemented our approach in the context of the Crab abstract
interpretation framework [14], finding that it required minimal effort, and did
not affect performance or analysis precision. We conclude that I-widening is a
practical generalisation of classical widening.

Acknowledgments

This work was partially supported by the Australian Research Council through
Discovery Early Career Researcher Award DE160100568 and US NSF grants
1528153 and 1817204.

18

References

1. G. Amato and F. Scozzari. Localizing widening and narrowing. In F. Logozzo
and M. Fähndrich, editors, Static Analysis, volume 7935 of LNCS, pages 25–42.
Springer, 2013.

2. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for
convex polyhedra. Science of Computer Programming, 58:28–56, 2005.

3. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In ACM Conf.
Programming Language Design and Implementation, pages 196–207, 2003.

4. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In D. Bjørner,
M. Broy, and I. V. Pottosin, editors, Formal Methods in Programming and Their
Applications, volume 735 of LNCS, pages 128–141. Springer, 1993.

5. A. Cortesi, G. Costantini, and P. Ferrara. A survey on product operators in abstract
interpretation. In A. Banerjee, O. Danvy, K.-G. Doh, and J. Hatcliff, editors,
Semantics, Abstract Interpretation, and Reasoning about Programs, volume 129 of
Electronic Proceedings in Theoretical Computer Science, pages 325–336, 2013.

6. P. Cousot. Semantic foundations of program analysis. In S. S. Muchnick and N. D.
Jones, editors, Program Flow Analysis: Theory and Applications, pages 303–346.
Prentice-Hall, 1981.

7. P. Cousot. Forward non-relational infinitary static analysis, 2005. Slide set 18 from
MIT Course 16.399, Abstract Interpretation, http://www.mit.edu/afs/athena.
mit.edu/course/16/16.399/www/.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
Fourth ACM Symp. Principles of Programming Languages, pages 238–252. ACM
Press, 1977.

9. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. Sixth ACM Symp. Principles of Programming Languages, pages 269–282.
ACM Press, 1979.

10. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computations, 2(4):511–547, 1992.

11. P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, Programming Language Implementation and Logic Program-
ming, volume 631 of LNCS, pages 269–295. Springer, 1992.

12. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
Combinations of abstractions in the ASTRÉE static analyzer. In M. Okada and
I. Satoh, editors, Advances in Computer Science (ASIAN 2006), volume 4435 of
LNCS, pages 272–300. Springer, 2007.

13. P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among
variables of a program. In Proc. Fifth ACM Symp. Principles of Programming
Languages, pages 84–97. ACM Press, 1978.

14. Crab: CoRnucopia of ABstractions: A language-agnostic library for abstract inter-
pretation. https://github.com/seahorn/crab.

15. G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Abstract
interpretation over non-lattice abstract domains. In F. Logozzo and M. Fähndrich,
editors, Static Analysis, volume 7935 of LNCS, pages 6–24. Springer, 2013.

16. G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Interval
analysis and machine arithmetic: Why signedness ignorance is bliss. ACM Trans-
actions on Programming Languages and Systems, 37(1):1:1–1:35, 2014.

19

17. G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. An abstract
domain of uninterpreted functions. In B. Jobstmann and K. R. M. Leino, editors,
Verification, Model Checking and Abstract Interpretation: Proceedings of the 17th
International Conference, volume 9583 of LNCS, pages 85–103. Springer, 2016.

18. D. Gopan and T. Reps. Lookahead widening. In T. Ball and R. B. Jones, editors,
Computer Aided Verification, volume 4144 of LNCS, pages 452–466. Springer, 2006.

19. D. Gopan and T. Reps. Guided static analysis. In H. Riis Nielson and G. Filé,
editors, Static Analysis, volume 4634 of LNCS, pages 349–365. Springer, 2007.

20. E. Goubault, T. L. Gall, and S. Putot. An accurate join for zonotopes, preserving
affine input/output relations. Electr. Notes Theor. Comput. Sci., 287:65–76, 2012.

21. P. Granger. Improving the results of static analyses of programs by local decreasing
iterations. In R. Shyamasundar, editor, Foundations of Software Technology and
Theoretical Computer Science, volume 652 of LNCS, pages 68–79. Springer, 1992.

22. A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The SeaHorn verifi-
cation framework. In D. Kroening and C. S. Păsăreanu, editors, Computer Aided
Verification, Part 1, volume 9206 of LNCS, pages 343–361, 2015.

23. N. Halbwachs and J. Henry. When the decreasing sequence fails. In A. Miné,
editor, Static Analysis, volume 7460 of LNCS, pages 198–213. Springer, 2012.

24. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11:157–185, 1997.

25. L. Lakhdar-Chaouch, B. Jeannet, and A. Girault. Widening with thresholds for
programs with complex control graphs. In T. Bultan and P.-A. Hsiung, editors,
Automated Technology for Verification and Analysis, volume 6996 of LNCS, pages
492–502. Springer, 2011.

26. B. Mihaila, A. Sepp, and A. Simon. Widening as abstract domain. In G. Brat,
N. Rungta, and A. Venet, editors, NASA Formal Methods, volume 7871 of LNCS,
pages 170–184. Springer, 2013.

27. A. Miné. A new numerical abstract domain based on difference-bound matrices.
In O. Danvy and A. Filinski, editors, Programs as Data Objects, volume 2053 of
LNCS, pages 155–172. Springer, 2001.

28. A. Miné. The Octagon abstract domain. In Proc. Workshop in Analysis, Slicing
and Transformation, pages 310–319, 2001.

29. A. Simon and A. King. Widening polyhedra with landmarks. In N. Kobayashi,
editor, Programming Languages and Systems, volume 4279 of LNCS, pages 166–
182. Springer, 2006.

20

