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Abstract. Modularity is indispensable for scaling automatic verifica-
tion to large programs. However, modularity also introduces challenges
because it requires inferring and abstracting the behavior of functions
as summaries – formulas that relate the function’s inputs and outputs.
For programs manipulating memory, summaries must include the func-
tion’s frame, i.e., how the content memory is affected by the execution of
the function. In SMT-based model-checking, memory is often modeled
with (unbounded) logical arrays and expressing frames generally requires
universally quantified formulas. Such formulas significantly complicate
inference and subsequent reasoning and are thus to be avoided. In this
paper, we present a technique to encode the memory that is bounded
explicitly, eliminating the need for quantified summaries. We build on
the insight that the size of frames can be statically known. This enables
replacing unbounded arrays with finite maps – a finite collection of key-
value pairs. Specifically, we develop a new static analysis to infer the
finite parts of a function’s frame. We then extend the theory of arrays
to the theory of finite maps and show that satisfiability of Constrained
Horn Clauses (CHCs) over finite maps is reducible to satisfiability of
CHCs over the base theory. Finally, we propose a new encoding from im-
perative programs to CHCs that uses finite maps to model explicitly the
finite memory passed in function calls. The result is a new verification
strategy that preserves the advantages of modularity while reducing the
need for quantified frames. We have implemented this approach in Sea-
Horn, a state-of-the-art CHC-based software model checker for LLVM.
An evaluation on Linux Drivers from SV-COMP shows the effectiveness
of our technique.
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1 Introduction

Modularity is indispensable for scaling automatic verification, such as software
model checking. Reasoning modularly about a program involves abstracting the
behavior of its functions in the form of a summary. For programs manipulating
memory inferring summaries can be especially challenging. The reason is that
summaries need to express the frame of the function, i.e., how the function
modifies memory in any execution.

We focus on automated modular program verification using Constrained
Horn Clauses (CHCs). In this setting, program verification is reduced to sat-
isfiability of a set of logical rules (or clauses) [6], where unknown predicates
represent summaries and inductive invariants. Satisfiability of CHCs is in gen-
eral undecidable but, in practice, it is solved using so-called CHC solvers (e.g.,
HoIce [8], and Spacer [16]). CHC solvers automatically synthesize inductive
invariants and, in the case of modular verification, function summaries.

In CHCs, memory side-effects are encoded by first purifying program state-
ments to make such side-effects explicit, and then, encoding memory content by
(unbounded) logical arrays. Each summary predicate relates arrays representing
input and output memory contents. While this encoding is simple to implement,
it is challenging to solve because it requires the CHC solver to discover function
frames, that are typically expressed using quantified formulas. Although reason-
ing with quantified formulas is supported by some CHC solvers (e.g., [12]), it
remains very challenging and is best to be avoided whenever possible.

Quantifiers are needed to restrict arrays at an unbounded number of indices.
This is required to express how the execution of a function affects the state
of memory. A key observation is that modeling the finite parts of a function’s
memory does not require the full power of arrays. The memory that is finitely
accessed can be modeled using only scalar variables, avoiding the need for quan-
tifiers. In this paper, we present a fully automatic CHC encoding of C programs
that alleviates the problem of quantified frames based on this observation.

First, we introduce a new static analysis to compute: (a) which memory
regions used in a function are accessed only finitely by it, (b) how many bytes
are accessed per region, and (c) what are all the access paths for the finitely
accessed memory. Our analysis is based on an existing alias analysis that ensures
the soundness of our approach. Second, we model bounded memory, i.e., finite
associative arrays, within SMT. For this, we propose a new SMT theory of
finite maps. Finite maps modify the theory of arrays to account for a fixed
number of key-value pairs. We show that the theory of finite maps is reducible to
underlying SMT theories, and extend the reduction to CHCs (i.e., reduce CHCs
with finite maps, to CHCs without). Finally, we extend the CHC encoding of
SeaHorn to use finite maps for finite memory regions passed to functions. The
key difficulty is in the handling of call sites since they must explicitly express
the frame conditions.

We implemented our encoding using SeaHorn and evaluated it on Linux
Drivers from SV-COMP. We show that the new encoding improves the original,
array-based, one of SeaHorn. However, we also noticed that arrays sometimes
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provide a beneficial abstraction. Therefore, we relax our encoding to allow mixing
arrays and finite maps for best performance.

2 Related work

The frame problem is a well-known problem in artificial intelligence [20] and
program analysis. In this section, we discuss the related work in the areas of
deductive verification and model checking.

Deductive verification. Including the footprint of a function in its specification
to deal with the frame problem is a common solution in deductive verification.
This is done explicitly or implicitly. An example of explicit footprints is dynamic
frames [15] and the reads and modifies annotations in Dafny [19]. Examples
of implicit footprints are implicit dynamic frames [27], permissions [22], and
Separation Logic [26]. Explicit approaches describe the heap using additional
assertions in the base logic, while implicit approaches embed heap information
in the assertions by extending the logic. These have been proven difficult to
integrate into SMT-based software model checkers, due to the difficulty of using
SMT solvers to reason about both heap shape and content (Piskac et al. [23]).
Our approach can be seen as computing the footprint explicitly but partitioning
it into bounded and unbounded. The footprint is computed automatically, similar
in spirit to how procedure specifications are inferred in tools such as Infer [7].
Most significantly, our approach is tightly integrated with automatic invariant
inference over the content of the heap.

Inlining-based model checking. Tools based on bounded model checking
(e.g., CBMC [9], LLBMC [21], and SMACK [25]) inline all procedures, which
avoids the frame problem. Inlining is also implemented by unbounded tools such
as UFO [2], SeaHorn [10], CPAChecker [5], and UAutomizer [13].

Summary-based model checking. Unbounded model checkers such as CPA-
Checker, Whale [1], and UAutomizer use inter-procedural model checking tech-
niques to compute procedure summaries. The technique proposed by Beyer and
Friedberger [3] lifts the idea of Block-Abstraction Memoization (BAM) from ba-
sic blocks to procedure boundaries. Procedures can be analyzed by using any of
the intra-procedural model checking algorithms available in CPAChecker. The
technique then generates summaries and stores them in a cache for future reuse.
Whale computes summaries by exploiting sequence interpolants generated from
underapproximations (i.e., finite traces) of functions. Finally, UAutomizer relies
on Nested Interpolants [14] to produce summaries but they depend on the call-
ing context so they might be harder to reuse. Most importantly, none of these
techniques tackle the problem of frame inference. Note also this paper does not
propose a new inter-procedural model-checking algorithm. Instead, our goal is to
improve the encoding of verification conditions to reduce the need for quantifiers
in CHC solvers.

Modeling memory in SMT-based model checking. Most existing software
model checkers use some form of purification. In all cases, memory is modeled as
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either arrays [10] or lambdas [21]. Sometimes a finite abstraction of memory is
used (see e.g., Blast [4]) modeling precisely only a few levels of pointer deference
(e.g., *p and **p). In contrast, our modeling is precise – we use finite footprint
wherever possible and arrays only if necessary. While the need for a finite map
theory for program reasoning has been identified before [17], we propose a theory
of finite maps that is more suitable for encoding finite memory in CHCs.

3 Motivating Example

We illustrate our approach with an example. We begin with purification. Fig. 1a
shows the definition of a data structure S with a field x in a C-like language and
two functions over S: init_x, which stores the value 0 in the field x, and read_x,
which returns the value of the field. In its purified version (Fig. 1b), memory
operations are made explicit with a structure of type Memory (a special array)
that represents an unbounded sequence of bytes. The signature of every function
is extended to include a Memory parameter, and memory reads and writes are
operations over it. Given a variable MEM of type Memory, and assuming that field
x is at offset 0, s->x = v is encoded as MEM[s] = v, and s->x as MEM[s].

Consider the program defined by Figs. 1a and 1c. In Fig. 1c, the main proce-
dure allocates two structures p and q of type S on lines 3 and 4. Line 6 models
that the pointers p and q must be disjoint. Let us assume that after the execu-
tion of some arbitrary code the pointer analysis infers that p and q might alias
(line 7). On line 10, some values are stored at p->x and q->x. Fig. 1d shows the
purified version of Fig. 1c. Note that memory allocations do not change the state
of MEM. In this example, the property to be verified is assert(read_x(q, &MEM)
== 20) (line 13). The semantics of the program together with this property is
encoded by the following CHCs3:

r = m[s]→ read_x (s, r,m) (CHC 1)
m2 = m1[s← 0]→ init_x (s,m1,m2) (CHC 2)

p+ 4 < q ∧m1 = m[p← 10] ∧m2 = m1[q ← 20] ∧ (B3a)
init_x (p,m2,m3) ∧ read_x (q, r,m3)→ r = 20 (CHC 3)

The summaries computed for read_x and init_x need to be precise enough
to prove the satisfiability of CHC 3. For read_x, referring to the content of
one memory location is enough: λs, r,m. r = m[s]. Since m3 is an argument of
init_x, its summary needs to express howm3 is related tom2, i.e., how memory
is updated:

λp,m2,m3. m3[p] = 0 ∧ ∀i 6= p. m3[i] = m2[i]

The first conjunct expresses the memory location that is modified by init_x,
and the second expresses the frame, using a quantified formula.

We now show how a manual transformation in the C program eases the veri-
fication task by eliminating the need of inferring quantified summaries. Consider
3 We use the syntax a[i] and a′ = a[i ← v] to denote, respectively, an array select at
index i and an array store at index i with value v.
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1 typedef struct S { int x; } S;
2 void init_x(S *s) {
3 s->x = 0;
4 }
5 int read_x(S *s) {
6 return s->x;
7 }� �

(a)

�
1 typedef struct S { int x; } S;
2 void init_x(S *s, Memory *MEM) {
3 (*MEM)[s] = 0;
4 }
5 int read_x(S *s, Memory *MEM) {
6 return (*MEM)[s];
7 }� �

(b) Purified functions from Fig. 1a�
1 void main() {
2
3 S* p = malloc(sizeof(S));
4 S* q = malloc(sizeof(S));
5 // Model part of malloc semantics
6 assume(p + sizeof(S) < q);
7 // Code makes the analyzer think
8 // that p and q alias
9

10 p->x = 10; q->x = 20;
11
12 init_x(p);
13 assert(read_x(q) == 20);
14 }� �

(c)

�
1 void main() {
2 Memory MEM;
3 S* p = malloc(sizeof(S));
4 S* q = malloc(sizeof(S));
5 // Model part of malloc semantics
6 assume(p + sizeof(S) < q);
7 // Code makes the analyzer think
8 // that p and q alias
9

10 MEM[p] = 10; MEM[q] = 20;
11
12 init_x(p, &MEM);
13 assert(read_x(q, &MEM) == 20);
14 }� �

(d) Purified program from Fig. 1c�
1 void main() {
2
3 S* p = malloc(sizeof(S));
4 S* q = malloc(sizeof(S));
5 // Model part of malloc semantics
6 assume(p + sizeof(S) < q);
7 // Code makes the analyzer think
8 // that p and q alias
9

10 p->x = 10; q->x = 20;
11
12 S tmp;
13 tmp.x = p->x;
14 init_x(&tmp);
15 p->x = tmp.x;
16 assert(read_x(q) == 20);
17 }� �

(e)

�
1 void main() {
2 Memory MEM;
3 S* p = malloc(sizeof(S));
4 S* q = malloc(sizeof(S));
5 // Model part of malloc semantics
6 assume(p + sizeof(S) < q);
7 // Code makes the analyzer think
8 // that p and q alias
9

10 MEM[p] = 10; MEM[q] = 20;
11
12 S tmp; Memory AUX;
13 AUX[&tmp] = MEM[p];
14 init_x(&tmp, &AUX);
15 MEM[p] = AUX[&tmp];
16 assert(read_x(q, &MEM) == 20);
17 }� �

(f) Purified program from Fig. 1e

Fig. 1: Some functions (left) and their purified versions (right)

the program defined by Figs. 1a and 1e. The main function differs from Fig. 1c
in that a new structure tmp is passed to init_x. The content of p->x is stored
in tmp.x before calling init_x, and tmp.x is copied back to p->x right after the
call returns. After purification (Fig. 1f), before the call, the memory contents
accessed by the callee (MEM[p]) are copied into a new memory AUX, because the
content tmp and p is known to be stored in different memory regions. After the
call, the contents are copied back from AUX into MEM. It is not hard to see that the
programs in Figs. 1d and 1f are equivalent. However, the latter is much easier
to verify. The program in Figs. 1b and 1f is encoded by CHCs {1, 2} and:
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B3a ∧ aux1 = aux [tmp ← m2[p]] ∧ (L4a)
init_x (tmp, aux1, aux2) ∧m3 = m2[p← aux2[tmp]] ∧ (L4b)

read_x (q, r,m3)→ r = 20 (CHC 4)

The difference between CHC 3 and CHC 4 is in the literals before and after the
predicate call to init_x. In CHC 4, the array contents accessed by init_x are
copied to a different array aux in L4a. The predicate init_x takes aux and tmp
arguments instead ofmi, and finally, the values of aux are copied back tom. Note
that CHCs {1, 2, 3} and {1, 2, 4} are equisatisfiable. However, the key advantage
of CHCs {1, 2, 4} is that the relation between m2 and m3 is explicit in CHC 4.
Since aux arrays are not relevant to the property, the behavior of init_x can be
abstracted with the trivial summary “true”, which is not quantified.

This example showed how a manual transformation in the C program eases
the verification task by eliminating the need of inferring quantified summaries. In
the rest of the paper, we show how to encode automatically in the CHCs the idea
behind this example, without any user intervention. This requires: (1) finding
the finite memory footprint of a function (i.e., the candidates to be copied to an
auxiliary variable) and (2) identifying the memory locations that are accessed,
to copy their content to/from auxiliary memory objects.

Remarks. In this example, using auxiliary arrays to represent the finite memory
accessed in init_x was enough to avoid a quantified summary. An alternative
approach is to use partial array equalities from the extensional theory of ar-
rays [29]. This, however, still uses arrays, and, therefore, does not eliminate the
need for quantifiers. A more concise logic to represent finite memory is the the-
ory of finite maps. In Sec. 5, we describe the theory of finite maps and how to
extend CHCs with finite maps.

4 Static Analysis of Memory Footprints

The C memory model interprets a pointer as a pair (id, o) where id is an identifier
that uniquely defines a memory object and o defines the byte in the object being
pointed to. The number of objects is unbounded. Points-to analysis typically
abstracts the unbounded set of concrete memory objects as a finite set of abstract
objects (also called memory regions). A points-to analysis is sound if whenever a
pointer p does not point to an abstract object, then there is no actual execution
in which p points to any concrete object represented by the abstract object.

We rely on the Data Structure Analysis (DSA) of [11, 18] which provides a
unification-based, context- and field-sensitive points-to analysis, that supports
pointer arithmetic. In DSA, a pointer can only point to one abstract object due
to its unification-based nature [28]. The analysis results are presented in the
form of DSA graphs. A DSA graph is a triple (C,E, σ), where C is a finite set
of abstract cells. Each cell is a pair of a memory region identifier and a byte
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Fig. 2: Points-to graph of a function foo(S *p1, S *p2, S *p3).

offset; E ⊆ C × C is a set of edges between cells, denoting points-to relations;
and environment σ : Var 7→ C maps pointer variables to cells.

As part of the DSA analysis, a summary graph is built for each function. A
summary graph contains all the memory objects accessed by the function and
its callees, and their points-to relationships, i.e., its memory footprint. These
graphs, called henceforth DSA graphs, are computed ignoring how and where the
function is called, assuming that there is no aliasing between input parameters.

Example 1 (DSA graph). Fig. 2 shows a DSA graph generated from a function
foo with parameters p1, p2, and p3. Each of the cells encodes an offset in the
memory region that may be accessed during a concrete execution. For exam-
ple, the memory object N1 has 2 cells f0 and f4 (naming the offsets). This
means that at some point of the execution of foo (or its callees), p1->f0 and
p1->f4 may be accessed (read or written). The cells of N2 are representing
that p1->f0->f0 and p1->f0->f4 may be accessed. Since DSA graphs are over-
approximations of the concrete memory used during any execution, the absence
of a cell in the graph implies that a memory location is never accessed. For
example, p1->f0->f0->f4 is never accessed because there is not a field f4 in
N3.

The goal is to determine which memory objects are bounded to make them
explicit in the encoding. First, we define the paths in a DSA graph.

Definition 1 (A path in the DSA graph). Let g = (C,E, σ) be a graph. A
sequence of cells [c1, c2, . . . , ck] is a path in g iff for every ci, ci+1, 1 ≤ i < k:

∃x, y, n · (ci, (n, x)) ∈ E ∧ (ci+1 = (n, y)) ∈ C.

This is the standard definition of a path in a graph, modified to capture that
when a memory object with id n is reachable by some path, all its fields (i.e., all
the cells that have the same id n) are reachable as well. In Fig. 2, p1 points to
cell (N1, f0) but both fields, f0 and f4, are reachable. An access path is a base
variable followed by a finite sequence of field accesses. That is, an access path
is a pair (var , acc), where var is a variable of the function, and acc is either a
sequence with a single cell or a path between two cells. E.g., the access path of
the expression p1->f0->f0 is (p1, [(N2, f0), (N1, f0)])4.

One way to determine if a cell represents a finite number of concrete memory
locations is by computing the set of paths in the DSA graph. Intuitively, a cell
4 For conciseness and presentation purposes, we use [x1, . . . , xn] to refer to
cons(x1, (. . . cons(xn, nil))) and write the paths reversed.
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that is reachable by n paths represents at most n distinct memory locations. The
following definition describes a cell being finitely accessed in terms of its paths.

Definition 2 (Finitely accessed cells). Let g be a graph with cells C and
C ′ ⊆ C. A cell c ∈ C is finitely accessed from C ′ if the number of paths from
c′ ∈ C ′ to c is finite.

This definition is based on paths starting from arbitrary cells in the graph.
However, in practice, we are interested only in the cells pointed by the parameters
of the function, because only those are reachable by callers. Finding the cells in
a summary graph that meet the property of Def. 2 allows identifying the finitely
accessed memory regions of a function assuming no aliasing relationships before
the function call. However, cells that are distinct in the callee maybe the same
in the caller. For example, in a call of the form foo(s1,s1,s3), objects N1
and N4, shown to be distinct in the summary graph of Fig. 2, are actually
the same since the same pointer s1 is passed as the first and second parameter
of foo. Therefore, these aliasing relationships must be considered to produce a
sound encoding. In the following, given the graph g of a function f the predicate
aliascall(c, c

′) is true if c and c′ (cells in g), may be the same in a call to f . The
predicate aliascall induces an equivalence relation over the cells in the graph,
where two cells are related if they are the same at the function call.

Definition 3 (Finitely accessed equivalence class). Let g be a graph with
cells C, C ′ ⊆ C, and aliascall the aliasing relation of the cells. The equivalence
class of c ∈ C is finitely accessed from C ′ iff all the elements in the equivalence
class are finitely accessed. That is, ∀d ∈ C such that aliascall(c, d), d is finitely
accessed from C ′.

Def. 3 lifts Def. 2 to the equivalence classes defined by aliascall . The follow-
ing example illustrates the concepts in Defs. 1, 2, and 3.

Example 2 (Bounded memory objects). Consider again the graph in Fig. 2 and
a predicate aliascall that is true iff the cells in the graph have the same color.
For example, aliascall((N1, f0), (N4, f0)) and aliascall((N1, f4), (N4, f4)) are
facts. First, we determine which cells are finitely accessed (Def. 2). Memory ob-
jects that have self-loops are not finitely accessed, as they have an unbounded
number of access paths. For example, the cell (N6, f0) has access paths p3->f0,
p3->f4->f0, p3->f4->f4->f0,. . . For the same reason, cells that are reachable
from memory objects with self-loops are also unbounded. For example, cell (N7,
f0) can be accessed by p3->f0->f0, p3->f4->f0->f0, p3->f4->f4->f0->f0,. . .
Thus, N6 and N7 encode unbounded memory accesses. For the remaining ob-
jects, N1 to N5, all the cells in the same equivalence class need to be finitely
accessed. Consider all the cells in green: N1, N4, and N5. All three objects are
finitely accessed, so the equivalence classes of (N1, f0) and (N1, f4) are finitely
accessed. N2 is finitely accessed but its cells are in the same equivalence class as
the cells in N7 (red). Since N7 is not finitely accessed, the classes of the cells of
N2 are not finitely accessed. Last, even if the classes of the cells of N2 are not
finitely accessed, N3 is finitely accessed because its parents are finitely accessed.
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compFiniteAPs(g = (C,E, σ), alias, fparams)

1: C ′ := {σ(p) | p ∈ fparams)
2: U := exploreGraph(g,C ′)
3: APs := ∅
4: for all p ∈ fparams do
5: ap0 = nil

6: recCompAPs(σ(p), g, U, alias, p, ap0,APs)

7: return APs

recCompAPs(c, g, U, alias, p, ap,APs)

8: if c ∈ U then return
9: if not aliasesUbnd(c, U, alias) then

10: for all fc ∈ Fields(c, g) do
11: APs := APs ∪ {(p, cons(fc, ap))}
12: for all lc ∈ Links(c, g) do
13: ap′ = cons(c, ap)
14: recCompAPs(lc, g, U, alias, p, ap′,APs)

aliasesUbnd(c, U, alias)
15: return ∃c′ ∈ U.alias(c, c′)

exploreGraph(g = (C,E, σ),C ′)
16: for all c ∈ C do
17: color [c] := white

18: U := ∅
19: for all c ∈ C ′ do
20: exploreCell(c, g, color , U)
21: return U ;

exploreCell(c, g, color , U)
22: color [c] := grey;
23: for all d ∈ Links(c, g) do
24: if color [d ] = grey then
25: propagateUbnd(d, g, color , U)
26: else if color [d ] = white then
27: exploreCell(d, g, color , U)

28: color [c] := black;

propagateUbnd(c, g, color , U)

29: U := U ∪ {c}
30: color [c] := black

31: for all d ∈ Links(c, g) do
32: if not (color [d ] = black and d ∈ U) then
33: propagateUbnd(d, g, color , U)

Fig. 3: Algorithm to find finite memory objects and all their access paths.

We have shown intuitively how to determine if cells are reachable only by
a finite number of paths. Fig. 3 shows the proposed algorithm to find the finite
memory objects used by a function and their access paths. Access paths are
used later to encode the memory passed to a function at a call. The entry point
is compFiniteAPs(g, alias, fparams) which takes a DSA graph g, a relation of
its cells alias, and the function parameters fparams. First, the set of cells, C ′,
pointed by fparams is computed, which is the starting point for traversing the
graph. The algorithm is split into two steps. The function exploreGraph computes
the set of cells that have an unbounded number of paths in g. Second, recCom-
pAPs computes all access paths to cells that belong to equivalence classes that
are finitely accessed through paths starting from C ′.

Function exploreGraph(g,C ′) is similar to standard cycle-detection algorithms.
However, when a cycle is detected in a memory object, all the cells that are
reached from that object are also stored as unbounded. In this function, color
is a map from cells to exploration status, denoted with a color: white, grey, or
black, respectively, not explored, exploring, and explored. U is the set of cells
with an unbounded number of paths. Given a cell c = (n, o) and a graph g,
Links(c, g) denotes the set of cells that are reachable from any cell in the same
region n, i.e., all the ci such that there is an edge of the form (n,_) → ci in g.
First, all the cells in g are marked as unexplored. Then, starting from every cell
in C ′, the cell is marked as grey (exploring), and all the reachable cells in one
step (given by Links) are explored. If the cell is currently being explored (grey),
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a cycle has been encountered and propagateUbnd is used to mark them. If the
cell has not been explored yet, then it is explored. Once all the links of the cell
have been explored, the cell is marked as explored (black). The function prop-
agateUbnd marks as explored and stores in U the cell c and all cells reachable
from c.

After exploration, recCompAPs(c, g, U, alias, p, ap,APs) computes the set of
access paths to cells in equivalence classes that represent bounded memory. The
argument c is the cell to be processed, g is the graph, U is the set of cells in
g that represent unbounded memory, alias determines the equivalence classes,
i.e., which cells need to be considered together, p is the base variable of the
access path, and ap is the path followed in the graph to access c. In the recursion,
loops in the graph are avoided by checking U before exploring a cell. Equivalence
classes are considered in aliasesUbnd, which determines if a cell belongs to the
same class as an unbounded cell. Fields(c, g) denotes the set of cells in the same
region as c. That is, Fields((n, o), g) = {c′ | c′ = (n,_) in the cells of g}. If c
does not alias with unbounded cells, all the fields are stored in APs, together
with how they were reached in ap (line 11 in Fig. 3). Last, the Links of the cell
are explored, adding c to the path in the recursive call (line 14).

Example 3 (Access paths to cells encoding finite memory). Given the graph of
Fig. 2 the following access paths to cells with finite access paths are found:

Class of (N1, f0): {(p1, [(N1, f0)]), (p2, [(N4, f0)]), (p2, [(N5, f0), (N4, f4)])}
Class of (N1, f4): {(p1, [(N1, f4)]), (p2, [(N4, f4)]), (p2, [(N5, f4), (N4, f4)])}
Class of (N3, f0): {(p1, [(N3, f0), (N2, f0), (N1, f0)]}

Remark. The correctness of our approach relies on the fact that DSA graphs
over-approximate both the length and the number of access paths in the concrete
memory graph. This follows from the fact that DSA graphs simulate all possible
concrete memory graphs [11].

5 Theory of Finite Maps

We model the contents of finitely accessed memory through finite maps. This
resembles an SMT-LIB unbounded array in that the map can have arbitrary
keys, and a finite sequence, in that the number of entries is fixed. While the
need for such a structure for program reasoning has been identified before [17],
no theory is provided in the SMT-LIB standard. In this section, we propose a
theory of finite maps that is suitable for encoding finite memory footprints. Our
key contribution is a reduction procedure from CHCs defined over finite maps
and integers to CHCs only over integers.

A finite map is composed of a set of key-value pairs. Its sort is defined by
the sort of the keys, the sort of the values, and the size of the finite map, i.e.,
the maximum number of key-value pairs that it can store. For simplicity of pre-
sentation, we restrict ourselves to a finite map of size 2 but our implementation
supports finite maps of arbitrary size. Similarly, we assume that finite maps are
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get-over-fm
get(fm, k)

toLmd(fm)(k)

get-over-set-1
get(set(fm, k, v), l)

v
(k = l)

get-over-set-2
get(set(fm, k, v), l)

get(fm, l)
(k 6= l)

get-over-ite
get(ite(c, fm, fe), k)

ite(c, get(fm, k), get(fe, k))

Fig. 4: Reduction rules.

If k0 6= k1 ∧ l = k0:
get-over-fm-1
get([k0 7→v0|k1 7→v1], l)

v0

set-over-fm-1
set([k0 7→v0|k1 7→v1], l, w)

[k0 7→w|k1 7→v1]

set-over-fm-2
set([k0 7→v0|k1 7→v1], l, w)

[k0 7→ite(l = k0 ,w , v0 )|k1 7→ite(l = k1 ,w , v1 )]

ite-over-fm
ite(c, [k0 7→v0 |k1 7→v1 ], f )

[k0 7→ite(c, v0 , get(f , k0 ))|k1 7→ite(c, v1 , get(f , k1 ))]

Fig. 5: Additional rules for optimization.

of the form [k0 7→ v0|k1 7→ v1]
5. We define two operations over finite maps: get,

denoted by get(fm, k), which stands for the value of map fm for key k, and set,
denoted by set(fm, k, v), which stands for the map obtained after writing v at
key k in fm. These operations are well-formed whenever the key used in the op-
eration is in the range of the map. That is, it matches a key of an already stored
key-value pair or the map contains a key-value pair that has not been initialized
yet, and thus, has no key assigned. We always ensure that expressions are well-
formed by construction, thus, we do not provide a well-formedness check. For
well-formed formulas, these operations satisfy the usual array axioms:
– congruence: k = l =⇒ get(fm, k) = get(fm, l)
– get-over-set (1): k = l =⇒ get(set(fm, k, v), l) = v
– get-over-set (2): k 6= l =⇒ get(set(fm, k, v), l) = get(fm, l)

Reduction procedure. Applying the rules in Fig. 4 exhaustively to a formula
with finite maps results in an equisatisfiable formula without finite maps. No
assumptions are made about how the keys within the map are related. The
function toLmd transforms a finite map into a lambda term: toLmd([k0 7→v0|k1 7→
v1]) = λx.(ite(x = k0 , v0 , v1 )). We do not support extensionality because it is
not needed in our encoding.

Optimizations. Fig. 5 defines rules for optimization for the cases in which
information about the keys is available. The application of these rules can be
used to update finite maps “in-place” during a sequence of set operations, which
can avoid an exponential blow-up caused by introducing ite terms.

CHCs over finite maps. In general, a Constrained Horn Clause (CHC) is a
first-order formula of the form ∀V · (φ∧

∧
pi(X

i
1, . . . , X

i
ni
) =⇒ h(Xh

1 , . . . , X
h
n)),

where V are all the free variables, φ is a constraint in some background the-
ory, pi are ni-ary predicates, and pi(Xi

1, . . . , X
i
ni
) applications of predicates to

first-order terms. The antecedent of the implication is called the body and the
consequent is called the head.
5 A finite map variable can always be expressed in this form using the size in its sort.
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CHCs over finite maps extend general CHCs by allowing finite maps to appear
in both the constraint φ and in arguments to the predicates, and extending the
background theory with finite maps. To reduce CHCs with finite maps to CHCs
without them, we apply the rules from Fig. 4 and Fig. 5 exhaustively to remove
fnite maps from φ. To eliminate finite maps from arguments, we expand each
finite map argument to the scalars defining its keys and values. For example, if
F = [k0 7→E0|k1 7→E1] with two key-value pairs, then all predicate applications
p(. . . , F, . . .), in bodies and heads, are expanded into p(. . . , k0, E0, k1, E1, . . .).

6 A CHC encoding with Finite Maps

In this section, we show how to extend the CHC encoding within SeaHorn
to model memory using finite maps. Roughly, SeaHorn takes as input a C
program with assertions (expressing the properties of interest) and produces a
set of CHCs. Each CHC captures the semantics of one or multiple basic blocks
(sequence of instructions) [6]. Loops are modeled by recursive CHCs and function
calls are encoded as predicate calls in the body of a CHC, representing the effects
of the call. In general, a CHC is of the form:

locn(s, a0) ∧ fun(s, a0, a1) ∧ φ(s, a1, a2) =⇒ locm(s, a2) (CHCA)

where every variable represents a vector of variables and is implicitly universally
quantified. The symbols locn, locm, and fun are predicate names. This clause
models how location locm in the program may be reached from location locn.
The literal fun(s, a0, a1) captures that there is a function call between the two
locations, and φ encodes the semantics of all program statements other than
function calls. s is a vector of scalar variables, and each ai are array vectors
that model the state of memory at the different locations. a0 models the state at
location n. It is passed to predicate fun, since it may modify memory, producing
the next state a1. The semantics of the remaining statements of the program,
from locn to locm, is modeled by the constraint φ(s, a1, a2), with a2 the state of
the memory at locm, in the consequent of the clause. The number of variables in
ai is the number of disjoint memory regions discovered by the pointer analysis.

When encoding bounded memory regions as finite maps the cells that were
identified to be bounded are represented using finite map terms, instead of arrays.
In general, a clause with finite maps in our proposed encoding is of the form:

locn(s, b0, f0) ∧ fun(s, b′0, fin , b
′
1, fout) ∧ φA(b0, fout , b1) ∧

∧φFM (f0, fout , f1) ∧ φ(s, b1, b2, f1, f2) =⇒ locm(s, b2, f2)
(CHCFM )

where s is the same as in CHCA; each bi is a subset of their respective ai in CHCA

(the cells encoded using arrays); b′0 and b′1 are, respectively, subsets of b0 and b1,
for the cells encoded using arrays in the function call fun; fi are vectors of finite
maps representing a subset of ai; and fin , fout finite maps used as parameters
in the function call. The constraint φA(b0, fout , b1) describes how the values
in the output finite maps fout are related to the arrays b1 in the caller. Such
constraints are generated if a memory cell is inferred to be unbounded in the
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EncFunCall(g, alias, params)

1: APs := compFiniteAPs(g, alias, params)
2: φ := true
3: sorts := infer-sorts(APs, alias)
4: for all (var , ap) ∈ APs do
5: match ap with cons(c, ap′)→
6: k := encodeAP(ap′, var , sorts)
7: v := encodeAP(ap, var , sorts)
8: cr = alias-rep(alias, c)
9: Ps in [cr ] := Ps in [cr ] ∪ {(in(k), in(v)}
10: Psout [cr ] := Psout [cr ] ∪ {(out(k), mk-var())}
11: for all (cr ,Ps ) ∈ Ps in do
12: Args in [cr ] := mk-fm(Ps )

13: for all (cr ,Ps ) ∈ Psout do
14: Argsout [cr ] := mk-fm(Ps )
15: φ′ := in(cellToE (cr , sorts[cr ]))
16: for all (k , v) ∈ Psout do
17: φ′ := mk-write(φ′, k , v)

18: φ := φ ∧ mk-eq(out(cellToE (cr , sorts[cr ])), φ
′)

19: return (Args in ,Argsout , φ)

encodeAP(ap, var , sorts)
20: match ap with
21: nil→ return varToE (var)
22: cons((n, o), ap′) →
23: MS := cellToE ((n, o), sorts[(n, o)])
24: idx ′ := encodeAP(ap′, var , sorts)
25: idx := mk-add(idx ′, o)
26: return mk-read(MS , k)

mk-read(mem, k)

27: match sort(mem) with
28: Array→ return mem[k ]
29: FiniteMap→ return get(mem, k)

mk-write(mem, k , v)

30: match sort(mem) with
31: Array→ return mem[k ← v]
32: FiniteMap→ return set(mem, k , v)

Fig. 6: Algorithm to encode the finite memory at a function call.

caller and bounded in the callee. The constraint φFM (f0, fout , f1) describes how
the values in the output finite maps are related to the finite maps f1 in the caller.
Such constraints are generated if a memory cell is inferred to be bounded both
in the caller and in the callee but the caller may access more memory locations
than the callee, and thus they have a different size.

Extending the encoding. We present the parts of the CHC encoding related
to memory. Memory accesses are modeled either with arrays or finite maps. The
function cellToE (c, sort) takes a memory cell c and its sort and returns a logical
variable of that sort. The sort is determined by the algorithm described in Fig. 3
(Sec. 4). If c is finitely accessed, its sort is a finite map of size the number of
access paths to it, otherwise, it is an array.

Without function calls, for every memory operation, its associated memory
cell c is obtained from the pointer analysis. Then, cellToE is used to encode c
as an array or finite map. The remaining operands are encoded by the function
varToE , which takes a program variable and returns a logical variable (pointers
are encoded as integers). The functions mk-read and mk-write, defined in Fig. 6,
produce the array or finite map term for the corresponding memory operation.

Function calls require additional constraints. Namely, the formulas φA and
φFM in CHCFM , and the finite maps that represent the memory used by the
function. Fig. 6 shows how to encode a function call. EncFunCall takes as in-
put the graph g of the called function, and the aliasing (alias) and the pa-
rameters (params) at the call site. It returns a triple (Args in ,Argsout , φ), with
Args in ,Argsout mappings from equivalence classes of cells to the corresponding
finite map used to encode all the cells in the class (i.e., respectively, fin and fout
in CHCFM ), and φ that expresses φA ∧ φFM in CHCFM . For simplicity, Args in
and Argsout are defined only for cells belonging to finitely accessed equivalence
classes. The remaining cells are encoded as arrays.
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Functions of the form mk-E build a logical expression of sort E. The functions
mk-eq and mk-add are self-explanatory. mk-var returns a fresh integer variable.
mk-fm builds a finite map out of a set of pairs of key-values. The function alias-
rep(alias, c) returns the representative of the class of c induced by alias.

The algorithm proceeds as follows. First, all the access paths are computed
on line 1 (described in Fig. 3). Based on these, on line 3, the sorts of the finite
maps are inferred. The loop on lines 4-10 processes all access paths. On lines 6-
7, the sequence of dereferences corresponding to the access path is encoded as
key-value pair of logical expression. The value is the whole sequence and the key
is the sequence except the last dereference. The algorithm produces input and
output finite maps representing memory before and after the call (lines 12-14).
The functions in and out rename logical terms on the set of input and output
variables. Finally, lines 15-18 build φA and φFM described in CHCFM .

In function encodeAP, if the access path (AP) is empty, the logical expression
of the pointer var is returned using varToE . If not, first, the formula of the
rest of the AP is computed, which is the index of the current level of the AP.
MS is the logical expression for the cell of the current level of the AP. For
example, if cellToE maps cells (N3, f0), (N2, f0), and (N1, f0) respectively to
a3, a2, and a1, an expression of the form p1->f0->f0->f0 with the access path
(p1, [(N3, f0), (N2, f0), (N1, f0)]) of Ex. 3 is encoded as: a3[a2[a1[p1]]]

The program defined by Figs. 1a and 1c encoded with finite maps is:

v = get([s 7→vin], s)→ read_x (s, v, [s 7→vin]) (CHC 5)
true → init_x (s, [s 7→vin], set([s 7→vin], s, 0)) (CHC 6)

B3a ∧ init_x (p, [p 7→m2[p]], [p 7→vout]) ∧ (L7a)
m3 = m2[p← get([p 7→vout], p)] ∧ read_x (q, r, [q 7→m3[q]])→ r = 20 (CHC 7)

Up to literal L7a, the same constraints as in CHC 3 are produced. The
arguments in L7a are generated on lines 12 and 14 of the algorithm. The last
line of CHC 7 captures how the output finite map and the memory at the call
m3 are related (lines 15-18). After applying the rules in Sec. 5 to remove finite
map expressions we obtain:

v = vin → read_x(s, v, s, vin) (CHC 5 without finite maps)
true → init_x(s, s, vin, s, 0) (CHC 6 without finite maps)

B3a ∧ init_x(p, p,m2[p], p, vout) ∧ (L7a without finite maps)
m3 = m2[p← vout] ∧ read_x(q, r, q,m3[q])→ r = 20 (CHC 7 without finite maps)

7 Experimental Evaluation

We have implemented our new technique to encode bounded memory regions
as finite maps using the CHC-based model-checker SeaHorn. The implemen-
tation is available in https://github.com/seahorn/seahorn/releases/tag/
fmaps-sas22. We have evaluated it on two different sets of benchmarks.

https://github.com/seahorn/seahorn/releases/tag/fmaps-sas22
https://github.com/seahorn/seahorn/releases/tag/fmaps-sas22
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SeaHorn UAuto
mod fmap-mod

time (s) time (s) time (s) quantified
bench1 1 1 8 Yes
bench2 – 1 20 Yes
bench3 – 1 18 Yes
bench4 – 1 120 Yes
bench5 – 1 – –
bench6 – 8 – –

Table 1: SeaHorn (mod, fmap-mod), and UAuto on micro-benchmarks.

Evaluation on microbenchmarks. To evaluate our technique we handcrafted
a set of benchmark problems.6 This is a set of small but challenging bench-
marks for modular, SMT-based model-checking. These examples can be easily
verified by inlining the functions, however, as we can see later, inlining does
not scale for larger programs. This means that if any of the patterns in these
examples are present in some program, it will not be possible to verify it when
inlining is not feasible. Table 1 shows the result of our evaluation. We compare
SeaHorn with two different modular encodings: modeling memory only with
arrays (mod) and our proposed technique, modeling memory with arrays and
finite maps (fmap-mod). SeaHorn, regardless the encoding, can only produce
quantifier-free summaries. As a result, it diverges in the cases where only quan-
tified summaries exist. We also compare with UAutomizer [13] (UAuto), which
can also produce (quantified) function summaries7. Table 1 shows whether the
summaries discovered by UAuto are quantified. The symbol ‘–’ denotes that
tool did not produce an answer in 5 minutes.

Evaluation on SV-COMP programs. We have also evaluated our approach
on a selection of 745 Linux device drivers from SVCOMP 20198, after discarding
all the benchmarks that were trivially proven by the SeaHorn front-end or
produced some crash. These programs are large and use a variety of language
features including pointers and aliasing. All experiments were run on Intel(R)
Xeon(R) CPU E5-2680 v3 @ 2.50GHz with 48 cores and 251GB of RAM on
Ubuntu 18.04.

Although SeaHorn is actively maintained, it does not participate in SV-
COMP. Hence, we first compare SeaHorn with participants of SVCOMP 2021
which also focus on discovering safe inductive invariants. Table 2 shows a compar-
ison with UAutomizer [13] (UAuto) and CPAChecker [5] (CPA). We compare

6 Available at https://zenodo.org/record/4505518.
7 In this evaluation, we used the online version of UAuto https://monteverdi.
informatik.uni-freiburg.de/tomcat/Website/?ui=int&tool=automizer because
it is the one that computes function summaries.

8 Available at https://zenodo.org/record/4498784.

https://zenodo.org/record/4505518
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=int&tool=automizer
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=int&tool=automizer
https://zenodo.org/record/4498784
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UAuto CPA SeaHorn (mono)
false 2 17 41
true 94 226 218

Table 2: Instances solved out of 745 within 900s and 8GB of memory.

with their most recent versions9, customized to analyze Linux device drivers.
For SeaHorn, we use monolithic encoding using arrays to model memory. The
rows true and false show how many instances were proven and disproven (i.e.,
the property holds or is violated), respectively, without exhausting resources. In
the rest, solved instances are those for which the verifier produced an answer.
From this comparison, we can safely conclude that SeaHorn is competitive with
UAuto and CPA on our benchmarks.

Tables 3-5 show the main results of this paper by comparing our new encoding
(fmap-mod) with two baseline encodings already available in SeaHorn: one
monolithic encoding with multiple arrays (mono) where all functions have been
inlined10 and one modular encoding with multiple arrays (mod) without special
treatment of statically-known finite memory. Since we are more interested in the
comparison with mod, the column mod shows the best result after 5 runs on each
program.

During our evaluation, we found out that representing all finite memory
with finite maps can be expensive. We hypothesize that the correctness of some
Linux device drivers does not depend much on memory (especially after the
optimizations performed by the SeaHorn frontend). In those cases, the solver
can avoid reasoning about most of the array expressions. However, our encoding
with finite maps eagerly adds constraints about memory, regardless of whether
they are relevant to prove the program correct or not.

For this reason, we limit the size of the finite maps (the number of key-value
pairs), denoted by sX in Tables 3-5, where each finite map of size X is encoded
using 2X scalar variables, two per key-value pair. Moreover, when no relations
about the keys are known, all cases need to be considered. In the worst case, for
a finite map of size Y , an ite term of depth Y − 1 is created for get operations,
and Y ite terms of depth Y − 1 (one per key-value pair) are needed in predicate
calls (see the reduction rules in Sec. 5). Therefore, we also limit this, denoted
by aY in Tables 3-5, informally meaning “encoding with finite maps only the
memory objects pointed by at most Y pointer variables in the program”. In
these tables, the column best is equivalent to running in parallel all finite map
configurations in a portfolio and stopping when the first one is solved. This is
more resource intensive than other configurations. However, since the optimal

9 Available at https://github.com/ultimate-pa/ultimate/releases/tag/v0.2.1
and https://cpachecker.sosy-lab.org/CPAchecker-2.0-unix.zip, respectively.

10 Recursive functions are not relevant to prove the properties so that they are ab-
stracted by functions without side-effects that return non-deterministic values.

https://github.com/ultimate-pa/ultimate/releases/tag/v0.2.1
https://cpachecker.sosy-lab.org/CPAchecker-2.0-unix.zip
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mono mod fmap-mod
s1-a1 s2-a1 s2-a2 s3-a1 s3-a2 s3-a3 s5-a1 s5-a2 s5-a3 s5-a5 best

false 41 107 94 91 93 89 91 90 90 90 90 87 110
true 218 278 265 268 262 270 263 263 265 256 261 262 297
total 259 385 359 359 355 359 354 353 355 346 351 349 405

Table 3: Instances solved by SeaHorn encoding as mono, mod, and fmap-mod.

s1-a1 s2-a1 s2-a2 s3-a1 s3-a2 s3-a3 s5-a1 s5-a2 s5-a3 s5-a5 best

false 61 59 59 56 59 58 58 59 59 57 73
true 85 91 82 89 82 84 88 79 82 83 110

total 146 150 141 145 141 142 146 138 141 140 183

Table 4: Instances solved by SeaHorn with fmap-mod not solved by mono.

s1-a1 s2-a1 s2-a2 s3-a1 s3-a2 s3-a3 s5-a1 s5-a2 s5-a3 s5-a5 best

false 2 1 2 2 4 1 1 1 2 1 5
true 6 11 11 8 11 13 8 15 13 14 24

total 8 12 13 10 15 14 9 16 15 15 29

Table 5: Instances solved by SeaHorn with fmap-mod not solved by mod.

s1-a1 s2-a1 s2-a2 s3-a1 s3-a2 s3-a3 s5-a1 s5-a2 s5-a3 s5-a5 best

false 15 17 16 18 20 18 18 18 19 21 2
true 19 21 27 16 26 28 21 37 30 30 5

total 34 38 43 36 46 46 39 55 49 51 7

Table 6: Instances solved by SeaHorn with mod (best out of 5 runs) not solved
by any configuration of fmap-mod.

finite map configuration for each program cannot be known a priori, it is a best
effort to verify as many programs as possible.

Table 3 contains the number of solved instances per encoding (columns). The
row total is the number of benchmarks solved by each configuration with the
available resources. Tables 4 and 5 show how many instances the CHCs with
finite maps (fmap-mod) were solved that, respectively, for mono and mod it was
not possible to solve, split by false and true. For example, in Table 5, s3-a2 (finite
maps of size 3 and at most 2 keys may alias) solves 4 false and 11 true instances
that cannot be solved by mod. The best configuration of finite maps proves 183
benchmarks that mono could not, and 29 that mod could not. However, fmap-
mod could not solve all the instances that mod solved. Table 6 shows the number
of instances that were solved only by (the best out of five runs of) mod and not
by any fmap-mod configuration (one run), represented in each of the columns.
There were 7 instances proven by mod that no fmap-mod configuration proved
(shown in the best column of Table 6). Lastly, were 35 mono instances that no
mod or fmap-mod configuration proved.
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We found that out of all the true instances solved by mod, 23% required arrays
in the summaries. When encoding memory with fmap-mod configurations, only
9% of the summaries required arrays on average.

Finally, we do not report the time of the encoding phase because it is neg-
ligible compared with the time spent solving. SeaHorn already performs a
whole-program pointer analysis so the overhead of our new encoding (Sec. 6)
and the finite maps reduction (Sec. 5) is very low.

8 Conclusions

We presented a new CHC encoding that enables automatic modular proofs for
programs with pointers without using quantified summaries. The main idea is
to encode explicitly the finite parts of the frame of a function when they can
be statically determined. We presented an algorithm to infer statically the size
of the memory used by a function. To represent bounded memory succinctly,
we proposed a new theory of finite maps, adapted to CHCs, and a reduction
procedure to simpler theories supported by any SMT solver. We then extended
a CHC encoding to represent finite memory using finite maps. We implemented
our new technique in SeaHorn and evaluated it on Linux device drivers. Our
results are encouraging and show that our new encoding can prove new programs
that a previous encoding cannot. However, our evaluation also shows that a
priori knowledge about the program and its properties can help to choose the
most effective encoding of CHCs. We consider this problem an interesting future
work.
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