
Algorithmic Logic-Based Verification

Arie Gurfinkel Temesghen Kahsai Jorge A. Navas

SEI/CMU NASA Ames/CMU NASA Ames/SGT

1. INTRODUCTION
Turing in his seminal paper “Checking a Large Routine” [Turing 1949] already asked
the question whether it was possible to check a routine was right. Among other contri-
butions, he proposed flowcharts as a concise program representation. He also described
a method based on the insight that a programmer should make a number of definite
assertions which can be proven individually, and from which the correctness of the
whole program could easily follow. It took several years until Floyd [Floyd 1967] and
Hoare [Hoare 1969], inspired by McCarthy [McCarthy 1963] and Naur [Naur 1966]’s
works, established a logic based on a deductive system what is called today Floyd-
Hoare logic that allowed proving correctness of programs in a rigorous manner. Di-
jkstra [Dijkstra 1975] presented the first semi-algorithmic view of the Floyd-Hoare
logic based on the ideas of predicate transformers. Since then, the field of software
verification has been growing rapidly during the last decades with many available
techniques. Among them, Abstract Interpretation [Cousot and Cousot 1977], Model
Checking [Clarke and Emerson 1981; Queille and Sifakis 1982], and Symbolic Execu-
tion [King 1976] are probably the most predominant algorithmic (i.e., fully automated)
techniques today.

Regardless of the underlying techniques, most software verifiers aim at proving
some correctness claims by computing the meaning of the program by either (a) in-
specting directly the source code of the program or (b) analyzing some specification
describing all program behaviors. Since the problem of computing the meaning of a
program is undecidable, most software verifiers offer different trade-offs between com-
pleteness, efficiency and accuracy. Therefore, it is highly desirable to combine different
techniques to get their maximal advantages. Unfortunately, due to the existence of a
myriad of program representations and language specifications, the communication
between verifiers is not so simple and the results are often hard to combine and reuse.

In this article, we make a case for Constrained Horn Clauses (CHCs), a fragment of
First Order Logic, as the basis for software verification. CHCs are a uniform way to for-
mally represent transition systems while allowing many encoding styles of verification
conditions (VCs). Moreover, CHCs allow separating the concerns of the programming

This material is based upon work funded and supported by NASA Contract No. NNX14AI09G, NSF Award
No. 1422705 and the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and devel-
opment center. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the United States Department of Defense,
NASA or NSF. This material has been approved for public release and unlimited distribution. DM-0002273.

ACM SIGLOG News 29 April 2015, Vol. 2, No. 2

language syntax and the verification techniques. The main idea is that Verification
Condition Generators (VCGs) translate the input program together with its assertions
into a set of VCs represented by means of CHCs while pure logic-based algorithms
using, for instance, abstract interpretation and model checking techniques can focus
on solving the CHCs. Finally, CHCs provide a formal logical foundations that simplify
the sharing of intermediate results.

Although the use of CHC as the basis to represent transition systems is relatively
new in the verification community, CHCs have been used for decades in other fields.
For example, CHCs are the basis of Constraint Logic Programming (CLP) [Jaffar and
Lassez 1987]. CLP has been successfully used in many different contexts such as man-
agement decision problems, trading, scheduling, electrical circuit analysis, mapping in
genetics, etc. (see [Marriott and Stuckey 1998] for a survey). Although the standard
execution model for CLP is based on depth-first search which is incomplete in pres-
ence of recursive CHCs, CLP systems are usually augmented with tabling capabilities
to record calls and their answers for reuse in future calls that can avoid unnecessary
infinite computations.

As a result of the success of CLP and LP (i.e., unconstrained Horn clauses) as pro-
gramming languages, abstract-interpretation-based static analysis of these languages
has been a very active area since the 80’s. The primary target is code optimization
in LP/CLP compilers (see e.g., [Søndergaard 1986; Bruynooghe et al. 1987; Warren
et al. 1988; Muthukumar and Hermenegildo 1989]). CLP has been also used as the
basis for software model checking [Delzanno and Podelski 1999; Flanagan 2003; Jaf-
far et al. 2004] of concurrent and timed automata systems as well as in the context of
static analysis of imperative and object-oriented languages (e.g., [Peralta et al. 1998;
Méndez-Lojo et al. 2007]).

Therefore, it is a fair question to ask why now this renewed interest in the use
of CHCs as the basis of analysis and verification? The answer lies in the new pow-
erful decision engines, called SMT solvers, that have been recently developed and
perfected in the verification community. Recently, new SMT-based techniques have
emerged (e.g., [Hoder and Bjørner 2012a; Grebenshchikov et al. 2012; Komuravelli
et al. 2014]) that are able to automatically solve recursive CHCs which were beyond
the capabilities of tabled CLP systems. Moreover, together with smart VC encodings
larger systems of CHCs can be now solved much faster. These advances have facil-
itated the implementation of efficient CHC solvers that can combine many existing
verification techniques based on abstract interpretation and model checking in more
sophisticated ways and compete with existing state-of-the-art approaches.

To provide a concrete example of a state-of-the-art CHC-based verifier, we present
in this article SEAHORN an efficient verification framework. SEAHORN aims at pro-
viding developers and researchers a collection of modular and reusable verification
components that can reduce the burden of building a new software verifier. Similar to
modern compilers, SEAHORN is split into three main components: the front-end, the
middle-end, and the back-end.

The front-end deals with the syntax and semantics of the input programming lan-
guage and generates an internal intermediate representation (IR) more suitable for
verification. SEAHORN relies on LLVM’s front-ends for this and it uses the LLVM [Lat-
tner and Adve 2004] infrastructure to optimize IR (LLVM bitcode). Although the role
of the front-ends are often played down and most research papers tend to omit them,
we argue that its role is a predominant one and our experience with SEAHORN demon-
strates clearly that the front-end must be a major component in the design of any ver-
ifier. Note that with this front-end, SEAHORN does not verify source code but instead

ACM SIGLOG News 30 April 2015, Vol. 2, No. 2

the optimized internal representation used by a real compiler (e.g., Clang 1). Although
this is not yet machine code it is a more realistic approach than the one adopted by
source code-based verifiers since it takes into consideration the WYSINWYX (What-
You-See-Is-Not-What-You-Execute) phenomenon. The middle-end uses CHCs to encode
the verification conditions that arise from the verification of the LLVM bitcode and it is
fully parametric on the semantics used to encode the VCs. SEAHORN provides several
out-of-the-box encodings which have been shown useful in practice. Finally, the back-
end discharges the verification conditions. Since this is a hard problem SEAHORN uses
a variety of state-of-the-art SMT-based model checking and abstract interpretation-
based solvers.

This versatile and flexible design not only allows easily interchanging multiple VC
encodings and solvers but also it makes possible the verification of new programming
languages or language specifications assuming a translation to CHCs is provided. This
makes SEAHORN an interesting verification infrastructure that allows developers and
researchers experimenting with new techniques.

In spite of the fact that efficiency is not the primary aspect in the design of SEA-
HORN, it has demonstrated its practicality by its performance at the annual Compe-
tition on Software Verification (SV-COMP 2015) [Beyer 2015] as well as a successful
experience at verifying industrial software.

2. BACKGROUND
In this section, we describe how verification conditions that arise from a verifica-
tion problem can be encoded into CHCs so that specialized solvers can check their
(un)-satisfiability. This approach has been adopted by an increasing number of ver-
ifiers such as Threader [Gupta et al. 2011], UFO [Albarghouthi et al. 2012], SEA-
HORN [Gurfinkel et al. 2015], HSF [Grebenshchikov et al. 2012], VeriMAP [De Angelis
et al. 2014], Eldarica [Rümmer et al. 2013], and TRACER [Jaffar et al. 2012].

2.1. Constrained Horn Clauses
Given the sets F of function symbols, P of predicate symbols, and V of variables, a
Constrained Horn Clause (CHC) is a formula:

8V · (� ^ p1[X1] ^ · · · ^ p

k

[X

k

]! h[X]), for k � 0

where � is a constraint over F and V with respect to some background theory; X
i

, X ✓
V are (possibly empty) vectors of variables; p

i

[X

i

] is an application p(t1, . . . , tn) of an
n-ary predicate symbol p 2 P for first-order terms t

i

constructed from F and X

i

; and
h[X] is either defined analogously to p

i

or is P-free (i.e., no P symbols occur in h).
Here, h is called the head of the clause and �^p1[X1]^ · · ·^pk[Xk

] is called the body.
A clause is called a query if its head is P-free, and otherwise, it is called a rule. A rule
with body true is called a fact. We say a clause is linear if its body contains at most one
predicate symbol, otherwise, it is called non-linear. In this article, we follow the CLP
convention of writing Horn clauses as h[X] �, p1[X1], . . . , pk[Xk

].

A set of CHCs is satisfiable if there exists an interpretation J of the predicate sym-
bols P such that each constraint � is true under J .

2.2. Weakest preconditions calculus
Dijkstra’s weakest preconditions calculus [Dijkstra 1975] is a classical method for
proving correctness of programs. The main idea is to reduce the problem of verifying
a Hoare triple {Pre}P{Post} to proving a pure first-order logic formula by applying a

1A C language family front-end for LLVM (http://clang.llvm.org).

ACM SIGLOG News 31 April 2015, Vol. 2, No. 2

http://clang.llvm.org

wp(if C S1 else S2,�) ; (C ^ wp(S1,�)) _ (¬ C ^ wp(S2,�))

wp(S1;S2,�) ; wp(S1,wp(S2,�))

wp(x = e,�) ; �[x e]

wp(error,�) ; ?
wp(while C B,�) ; I(x)^

8x,((I(x) ^ C ^ = B(x)! wp(B, I(x) ^ � B(x)))^
(I(x) ^ ¬ C ! �))

wp(return,�) ; �

wp(f(i, o),�) ; S
f

(i, o)! �

Fig. 1: Weakest precondition calculus rules for a simple imperative language.

predicate transformer. A well-known transformer is the weakest precondition of P with
respect to a formula � denoted by wp(P,�). Formally, wp(P,�) is the weakest condition
that needs to hold before executing P such that the execution terminates and the post-
condition � holds at the end of the execution. Informally, a Hoare triple {Pre}P{Post}
is valid if and only if Pre ! wp(P, Post). The rules that define the wp transformer
are shown in Figure 1. The symbol I denotes a loop invariant and B denotes a loop
variant. The symbol S denotes the function summary and �[x e] represents the for-
mula obtained by syntactically replacing all occurrences of x by e. The symbol � is a
well-founded relation, i.e., it does not admit any infinite chain.

2.3. From Weakest preconditions calculus to CHCs
We can obtain a set of CHCs by first applying exhaustively the rules in Figure 1 to the
formula:

Pre! wp(P, Post) ^
^

f2P

8i, o.wp(B
f

, S

f

(i, o))

where B

f

is the body of the function f . While the result is not syntactically CHC,
it can be put into the syntactically correct form by applying negation normal form,
prenex normal form, and finally conjunctive normal form transformations2. Finally,
we can use many of the abstract interpretation and SMT-based model checking CHC
solvers [Komuravelli et al. 2013; McMillan and Rybalchenko 2013; Hoder and Bjørner
2012b; Bjørner et al. 2013; Gange et al. 2013; Hermenegildo et al. 2003; Henriksen and
Gallagher 2006; Rümmer et al. 2013] for inferring the unknown relations I,B,S.

To illustrate, Figure 2(a) shows a program which adds two numbers. We would like
establish validity of the Hoare triple {y � 0}P{x = x

old

+ y

old

}, where P encodes lines
1–6. Figure 2(b) shows the corresponding verification conditions obtained after apply-
ing exhaustively the weakest preconditions calculus rules from Figure 1. Note that
the VCs are expressed as Constrainted Horn Clauses. The relation pre represents the
preconditions of the program. The relation I expresses the loop invariant which we
must infer in order to prove our Hoare triple. The relation exit represents the state
after the loop exit is executed, and finally, the relation error expresses our error con-
dition. The clauses C3, C4, and C5 are originated from the rule for while. Clause C1

represents the preconditions of our program and clause C2 is originated from the rule
for sequential composition. Finally, for proving our postcondition we actually generate
the following code if (x 6= x

old

+ y

old

) error. This is the reason why clause C6 describes
our postcondition in negated form.

2Note that the variant B is a function. Thus, the result is non-CHC. In practice, B is dropped for safety or
reachability properties, and turned into a well-founded relation for termination properties.

ACM SIGLOG News 32 April 2015, Vol. 2, No. 2

{ Pre: y � 0 }
h1ix

old

= x;
h2iy

old

= y;
h3iwhile (y > 0) {
h4i x = x+ 1;
h5i y = y � 1;
h6i}
{ Post: x = x

old

+ y

old

}

C1: pre(x, y) y � 0 .
C2: I(x, y, x

old

, y

old

) pre(x, y),

x

old

= x, y
old

= y .
C3: I(x, y, x

old

, y

old

).
C4: I(x0

, y

0
, x

old

, y

old

) I(x, y, x
old

, y

old

)

y > 0,
x

0
= x+ 1,

y

0
= y � 1.

C5: exit(x, x

old

, y

old

) I(x, y, x
old

, y

old

),
y 0.

C6: error(x, x

old

, y

old

) x 6= x

old

+ y

old

C7: ? error(x, x

old

, y

old

)

(a) (b)

Fig. 2: Program and its Verification Conditions encoded as CHCs.

The Hoare triple {y � 0}P{x = x

old

+ y

old

} holds if the query C7 is satisfiable. If
we solve this query together with clauses C1, . . . , C6 using SPACER [Komuravelli et al.
2014], we obtain the safe inductive invariant :

I(x, y, x
old

, y

old

)$ x = x

old

� y + y

old

^ y � 0

3. SEAHORN
In this section, we describe SEAHORN, a concrete example of an algorithmic logic-
based verification framework. SEAHORN is a fully automated verifier that proves user-
supplied assertions as well as a number of built-in safety properties. For example, SEA-
HORN provides built-in checks for buffer and signed integer overflows. It is released as
open-source and its source code is publicly available at http://tinyurl.com/GetSeaHorn.

3.1. Design and implementation
The design of SEAHORN provides users, developers, and researchers with an exten-
sible and customizable environment for experimenting with and implementing new
software verification techniques. It has been developed in a modular fashion, inspired
by the design of modern compilers. SEAHORN overall architecture is illustrated in Fig-
ure 3. Its architecture is layered in three parts:

— Front-End: Takes an LLVM-based (e.g., C) input program and generates LLVM IR
bitcode. Specifically, it performs the pre-processing and optimization of the bitcode
for verification purposes.

— Middle-end: Takes as input the optimized LLVM bitcode and emits verification con-
dition as CHC. The middle-end is in charge of selecting encoding of the VCs and the
degree of precision.

— Back-End: Takes CHC as input and outputs the result of the analysis. In principle,
any verification engine that digests CHC clauses could be used to discharge the VCs.
Currently, SEAHORN employs several SMT-based model checking engines based on
PDR/IC3 [Bradley 2012], including SPACER [Komuravelli et al. 2013; Komuravelli
et al. 2014] and GPDR [Hoder and Bjørner 2012b]. Complementary, SEAHORN uses
the abstract interpretation-based analyzer IKOS (Inference Kernel for Open Static
Analyzers) [Brat et al. 2014] for providing numerical invariants.
This layered architecture allows to separate the concerns of the input language syn-

tax, its operational semantics, and and the underlying verification semantics – the
semantics used by the verification engine.

ACM SIGLOG News 33 April 2015, Vol. 2, No. 2

http://tinyurl.com/GetSeaHorn

Fig. 3: Overview of SEAHORN architecture.

In the front-end, SEAHORN provides two options: a legacy front-end and an inter-
procedural front-end. The former, has been originally developed for UFO [Albargh-
outhi et al. 2013], and it has been very effective for solving SV-COMP (2013, 2014, and
2015) problems. However, it has its own limitations: its design is not modular and it
relies on multiple unsupported legacy tools (such as llvm-gcc and LLVM versions 2.6
and 2.9). Thus, it is difficult to maintain and extend. The inter-procedural front-end,
is a generic, modular and easy to maintain front-end. It takes any input program that
can be translated into LLVM bitcode. Currently, SEAHORN uses clang and gcc via
DragonEgg

3. In a long run, our goal is to make SEAHORN not to be limited to C pro-
grams, but applicable (with various degrees of success) to a broader set of languages
based on LLVM (e.g., C++, Objective C, and Swift). The generated LLVM bitcode is
then preprocessed and optimized in order to simplify the verification task. Moreover,
the inter-procedural front-end provides a transformation based on the concept of mixed
semantics4 [Gurfinkel et al. 2008; Lal and Qadeer 2014]. Such transformation, is es-
sential when proving safety of large programs and assertions are nested deeply inside
the call graph.

In the middle-end, SEAHORN is fully parametric in the semantics (e.g., small-step,
big-step, etc) used for the generation of VCs. In addition to generating VCs based on
small-step semantics [Peralta et al. 1998], SEAHORN can also automatically lift small-
step semantics to large-step [Beyer et al. 2009; Gurfinkel et al. 2011] (a.k.a. Large
Block Encoding, or LBE). The level of abstraction in the built-in semantics varies from
considering only LLVM numeric registers (scalars) to considering the whole heap (mod-
eled as a collection of non-overlapping arrays).

In the back-end, SEAHORN builds on the state-of-the-art in Software Model Check-
ing (SMC) and Abstract Interpretation (AI). SMC and AI have independently led
over the years to the production of analysis tools that have a substantial impact on
the development of real world software. Interestingly, the two exhibit complementary
strengths and weaknesses (see e.g., [Gurfinkel and Chaki 2010; Albarghouthi et al.
2012; Garoche et al. 2013; Bjørner and Gurfinkel 2015]). While SMC so far has been
proved stronger on software that is mostly control driven, AI is quite effective on data-
dependent programs. SEAHORN combines SMT-based model checking techniques with
program invariants supplied by an abstract interpretation-based tool.

3
DragonEgg (http://dragonegg.llvm.org/) is a GCC plugin that replaces GCC’s optimizers and code generators

with those from LLVM. As result, the output can be LLVM bitcode.
4The term mixed semantics refers to a combination of small- with big-step operational semantics.

ACM SIGLOG News 34 April 2015, Vol. 2, No. 2

http://dragonegg.llvm.org/

�

��

���

����

��
�

��
��

��

�����
�������

����
����������

�����
�������

�����������
����������

������

����� ����� � ���� ����

�����������������

Fig. 4: Quantile graph of the results for the Control Flow category.

3.2. Comparative evaluation with other software verifiers
SEAHORN has participated in the International Competition of Software Verification5

(SV-COMP 2015) [Beyer 2015]. In this competition, SEAHORN the legacy non-inter-
procedural front-end. It was configured to use the large step semantics and IKOS with
interval abstract domain.

Overall, SEAHORN won one gold medal in the Simple category – benchmarks that
depend mostly on control-flow structure and integer variables – two silver medals in
the categories Device Drivers and Control Flow. The former is a set of benchmarks
derived from the Linux device drivers and includes a variety of C features including
pointers. The latter is a set of benchmarks dependent mostly on the control-flow struc-
ture and integer variables. In the device drivers category, SEAHORN was beaten only
by BLAST [Beyer et al. 2007] – a tool tuned to analyzing Linux device drivers. Specif-
ically, BLAST got 88% of the maximum score while SEAHORN got 85%. The Control
Flow category, was won by CPAChecker [Beyer and Keremoglu 2011] getting 74% of
the maximum score, while SEAHORN got 69%. However, as can be seen in the quantile
plot reported in the Figure 4, SEAHORN is significantly more efficient than most other
tools solving most benchmarks much faster.

Subsequently, we have tested SEAHORN inter-procedural verification capabilities.
We ran several experiments on the 215 benchmarks that we either could not verify
or took more than a minute to verify in SV-COMP 2015. For example, we compared
the running times with and without inlining in the front-end. Figure 5 shows a scatter
plot of the running times and we see that SPACER takes less time on many benchmarks
when inlining is disabled.

3.3. Evaluation on an industrial case-study
We also evaluated the SEAHORN built-in buffer overflow checks on two autopilot con-
trol software. We have used two open-source autopilot control software mnav

6 (160K
LOC) and paparazzi

7 (20K LOC). Both are versatile autopilot control software for a
fixed-wing aircrafts and multi-copters. Overall, SEAHORN was able to prove the ab-

5Detailed results can be found at http://tinyurl.com/svcomp15
6Micro NAV Autopilot Software available at http://sourceforge.net/projects/micronav/.
7Paparazzi Autopilot Software available at http://wiki.paparazziuav.org/wiki/Main_Page.

ACM SIGLOG News 35 April 2015, Vol. 2, No. 2

http://tinyurl.com/svcomp15
http://sourceforge.net/projects/micronav/
http://wiki.paparazziuav.org/wiki/Main_Page

0 200 400 600 800 1000 1200 1400 1600 1800

Spacer with inlining (secs)

0

200

400

600

800

1000

1200

1400

1600

1800

S
pa

c
e
r
w
i
t
h
o
u
t
i
n
l
i
n
i
n
g
(
se
cs
)

Fig. 5: A plot showing the advantage of inter-procedural (y-axis) versus intra-
procedural (x-axis) encodings using SPACER back-end.

sence of buffer overflows for both benchmarks. To the best of our knowledge, this is the
first time that absence of buffer overflows has been proven for mnav.

4. CONCLUSIONS
Developing new tools for automated software verification is a tedious and very diffi-
cult task. First, due to the undecidability of the problem tools must be highly tuned
and engineered to provide reasonable efficiency/precision trade-offs. Second, there is a
very diverse assortments of syntactic and semantic features in the different program-
ming languages. In this article, we advocate for a design that allows the decoupling
of programming language syntax and semantics from the underlying verification tech-
nique. We claim that Constrained Horn Clauses (CHCs) is the ideal candidate to be
the intermediate formal language for software verification. CHCs are a uniform way
to formally represent transition systems while allowing many different encoding styles
of verification conditions. This is inline with recent trends in the software verification
community and advocated by Bjørner et al. [Bjørner et al. 2012].

We also presented, SEAHORN, an LLVM-based automated verification framework.
By its very nature, a verifier shares many of the complexities of an optimizing com-
piler and of an efficient automated theorem prover. From the compiler perspective,
the issues include idiomatic syntax, parsing, intermediate representation, static anal-
ysis, and equivalence preserving program transformations. From the theorem prov-
ing perspective, the issues include verification logic, verification condition generation,
synthesizes of sufficient inductive invariants, deciding satisfiability, interpolation, and
consequence generation. By reducing verification to satisfiability of CHC, SEAHORN
cleanly separates between compilation and verification concerns and lets us re-use
many of the existing components (from LLVM and Z3). SEAHORN is a versatile and
highly customizable framework that helps significantly in building new tools by allow-
ing researchers to experiment only on their particular techniques of interest. We have
shown that SEAHORN is a highly competitive verifier for safety properties both for
verification benchmarks (SV-COMP) and large industrial software (autopilot code).

This is an exciting time for algorithmic software verification. The advances in the
computational capabilities of hardware and maturity of verification algorithms make
the technology scalable, accessible, and applicable to serious industrial applications.
We believe that the line of work presented in this article provides the necessary foun-

ACM SIGLOG News 36 April 2015, Vol. 2, No. 2

dations for building the next-generation verification tools, and will facilitate simpler
designs and better communication of verification results between tools and their users.

5. ACKNOWLEDGMENTS
We would like to thank Anvesh Komuravelli and Nikolaj Bjørner for numerous discus-
sions that helped shape this work.

REFERENCES
Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. 2012. Craig Interpretation. In SAS. 300–316.
Aws Albarghouthi, Arie Gurfinkel, Yi Li, Sagar Chaki, and Marsha Chechik. 2013. UFO: Verification with

Interpolants and Abstract Interpretation - (Competition Contribution). In TACAS. 637–640.
Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. 2012. Ufo: A Framework for Abstraction-

and Interpolation-Based Software Verification. In CAV. 672–678.
Dirk Beyer. 2015. Software Verification and Verifiable Witnesses (Report on SV-COMP 2015). In TACAS.
Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu, and Roberto Sebastiani. 2009. Soft-

ware model checking via large-block encoding. In FMCAD. 25–32.
Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. 2007. The software model checker

Blast. STTT 9, 5-6 (2007), 505–525.
Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool for Configurable Software Verification. In

CAV. 184–190.
Nikolaj Bjørner and Arie Gurfinkel. 2015. Property Directed Polyhedral Abstraction. In Verification, Model

Checking, and Abstract Interpretation - 16th International Conference, VMCAI 2015. 263–281.
Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. 2012. Program Verification as Satisfiabil-

ity Modulo Theories. In SMT. 3–11.
Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. 2013. On Solving Universally Quantified

Horn Clauses. In SAS. 105–125.
Aaron R. Bradley. 2012. IC3 and beyond: Incremental, Inductive Verification. In CAV. 4.
Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud Venet. 2014. IKOS: A Framework for Static Analysis

Based on Abstract Interpretation. In SEFM. 271–277.
Maurice Bruynooghe, Gerda Janssens, Alain Callebaut, and Bart Demoen. 1987. Abstract Interpretation:

Towards the Global Optimization of Prolog Programs. In Proceedings of the 1987 Symposium on Logic
Programming, San Francisco, California, USA, August 31 - September 4, 1987. 192–204.

Edmund M. Clarke and E. Allen Emerson. 1981. Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In Logics of Programs, Workshop, Yorktown Heights, New York, May
1981. 52–71.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Anal-
ysis of Programs by Construction or Approximation of Fixpoints. In Proceedings of the Fourth Annual
Symposium on Principles of Programming Languages. 238–252.

Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti. 2014. VeriMAP: A Tool
for Verifying Programs through Transformations. In TACAS. 568–574.

Giorgio Delzanno and Andreas Podelski. 1999. Model Checking in CLP. In TACAS. 223–239.
Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Com-

mun. ACM 18, 8 (1975), 453–457.
Cormac Flanagan. 2003. Automatic Software Model Checking Using CLP. In ESOP. 189–203.
Robert W. Floyd. 1967. Assigning meanings to programs. Symposium Applied Mathematics 10 (1967), 19–32.
Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2013. Failure

tabled constraint logic programming by interpolation. TPLP 13, 4-5 (2013), 593–607.
Pierre-Loïc Garoche, Temesghen Kahsai, and Cesare Tinelli. 2013. Incremental Invariant Generation Using

Logic-Based Automatic Abstract Transformers. In NASA Formal Methods, 5th International Sympo-
sium, NFM 2013. 139–154.

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko. 2012. Synthesizing
Software Verifiers from Proof Rules. In PLDI. 405–416.

Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. 2011. Threader: A Constraint-Based Veri-
fier for Multi-threaded Programs. In Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. 412–417.

ACM SIGLOG News 37 April 2015, Vol. 2, No. 2

Arie Gurfinkel and Sagar Chaki. 2010. Combining predicate and numeric abstraction for software model
checking. STTT 12, 6 (2010), 409–427.

Arie Gurfinkel, Sagar Chaki, and Samir Sapra. 2011. Efficient Predicate Abstraction of Program Sum-
maries. In NFM. 131–145.

Arie Gurfinkel, Temesghen Kahsai, and Jorge A. Navas. 2015. SeaHorn: A Framework For Verifying C
Programs - (Competition Contribution). In To appear in TACAS.

Arie Gurfinkel, Ou Wei, and Marsha Chechik. 2008. Model Checking Recursive Programs with Exact Pred-
icate Abstraction. In ATVA. 95–110.

Kim S. Henriksen and John P. Gallagher. 2006. CHA: Convex Hull Analyser for constraint logic programs.
(2006).

Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-García. 2003. Program Devel-
opment Using Abstract Interpretation (And The Ciao System Preprocessor). In SAS. 127–152.

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576–
580.

Krystof Hoder and Nikolaj Bjørner. 2012a. Generalized Property Directed Reachability. In Theory and Ap-
plications of Satisfiability Testing - SAT 2012 - 15th International Conference, Trento, Italy, June 17-20,
2012. Proceedings. 157–171.

Krystof Hoder and Nikolaj Bjørner. 2012b. Generalized Property Directed Reachability. In SAT. 157–171.
Joxan Jaffar and Jean-Louis Lassez. 1987. Constraint Logic Programming. In POPL. 111–119.
Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and Andrew E. Santosa. 2012. TRACER: A Symbolic

Execution Tool for Verification. In CAV. 758–766.
Joxan Jaffar, Andrew E. Santosa, and Razvan Voicu. 2004. A CLP Proof Method for Timed Automata. In

RTSS. 175–186.
James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (1976), 385–394.
Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2014. SMT-Based Model Checking for Recursive

Programs. In CAV. 17–34.
Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki, and Edmund M. Clarke. 2013. Automatic Abstraction in

SMT-Based Unbounded Software Model Checking. In CAV. 846–862.
Akash Lal and Shaz Qadeer. 2014. A program transformation for faster goal-directed search. In FMCAD.

147–154.
Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis

& Transformation. In CGO. 75–88.
Kim. Marriott and Peter. J. Stuckey. 1998. Introduction to Constraint Logic Programming. MIT Press, Cam-

bridge, MA, USA.
John McCarthy. 1963. A Basis for a Mathematical Theory of Computation. (1963), 33–70.
Ken McMillan and Andrey Rybalchenko. 2013. Solving Constrained Horn Clauses using Interpolation. Tech-

nical Report. MSR-TR-2013-6.
Mario Méndez-Lojo, Jorge A. Navas, and Manuel V. Hermenegildo. 2007. A Flexible, (C)LP-Based Approach

to the Analysis of Object-Oriented Programs. In LOPSTR. 154–168.
Kalyan Muthukumar and Manuel V. Hermenegildo. 1989. Determination of Variable Dependence Infor-

mation through Abstract Interpretation. In Logic Programming, Proceedings of the North American
Conference. 166–185.

Peter Naur. 1966. Proof of algorithms by general snapshots. 6 (1966), 310–316. Issue 4.
Julio C. Peralta, John P. Gallagher, and Hüseyin Saglam. 1998. Analysis of Imperative Programs through

Analysis of Constraint Logic Programs. In SAS. 246–261.
Jean-Pierre Queille and Joseph Sifakis. 1982. Specification and verification of concurrent systems in CE-

SAR. In International Symposium on Programming, 5th Colloquium, Torino, Italy, April 6-8, 1982, Pro-
ceedings. 337–351.

Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. 2013. Disjunctive Interpolants for Horn-Clause Veri-
fication. In CAV. 347–363.

Harald Søndergaard. 1986. An Application of Abstract Interpretation of Logic Programs: Occur Check Re-
duction. In ESOP. 327–338.

Alan Turing. 1949. Checking a Large Routine. (1949).
Richard Warren, Manuel V. Hermenegildo, and Saumya K. Debray. 1988. On the Practicality of Global Flow

Analysis of Logic Programs. In ICLP. 684–699.

ACM SIGLOG News 38 April 2015, Vol. 2, No. 2

