t.)

Check for
Updates

A Flow-Sensitive Refinement Type System for Verifying eBPF
Programs

AMEER HAMZA, Florida State University, USA

LUCAS ZAVALIA, Florida State University, USA

ARIE GURFINKEL, University of Waterloo, Canada
JORGE A. NAVAS, Certora Inc, USA

GRIGORY FEDYUKOVICH, Florida State University, USA

The Extended Berkeley Packet Filter (EBPF) subsystem within an operating system’s kernel enables userspace
programs to extend kernel functionality dynamically. Due to the security risks associated with runtime
modification of the operating system, EBPF requires all programs to be verified before deploying them within
the kernel. Existing approaches to EBPF verification are monolithic, requiring their entire analysis to be
done in a secure environment, resulting in the need for extensive trusted codebases. We present a type-
based verification approach that automatically infers proof certificates in userspace, thus reducing the size
and complexity of the trusted codebase. At the same time, only the proof-checking component needs to be
deployed in a secure environment. Moreover, compared to previous techniques, our type system enhances
the debuggability of the programs for users through ergonomic type annotations when verification fails. We
implemented our type inference algorithm in a tool called VEREFINE and evaluated it against an existing EBPF
verifier, PREVAIL. VEREFINE outperformed PREVAIL on most of the industrial benchmarks.

CCS Concepts: « Theory of computation — Type theory; Abstraction; Program verification; - Networks
— Network monitoring; « Security and privacy — Information flow control; Operating systems security.

Additional Key Words and Phrases: Flow-Sensitivity, Refinement Types, Type Inference, Memory Safety,
Information Flow Safety, Automated Reasoning about Low-Level Code

ACM Reference Format:

Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich. 2025. A Flow-Sensitive
Refinement Type System for Verifying eBPF Programs. Proc. ACM Program. Lang. 9, OOPSLAZ2, Article 410
(October 2025), 28 pages. https://doi.org/10.1145/3763799

1 Introduction

The EBPF technology [42] allows userspace code to run in the privileged context of the kernel in
Linux and Windows operating systems. Evolved from the Berkeley Packet Filter (BPF) project [34],
which originally aimed to filter network traffic at a low level, it has substantially more capabilities,
including network observability, process monitoring, and tracing now. For example, in Kubernetes
systems, all pods in a given node run on the same kernel, allowing EBPF programs to observe
processes in every container in every pod on the node. However, the kernel, being a secure
environment, may be harmed by such untrusted programs. For example, it is hypothetically possible
to manipulate pointers inside of EBPF such that the address of a pointer is sent to the userspace.

Authors’ Contact Information: Ameer Hamza, Florida State University, Tallahassee, USA, ah18r@fsu.edu; Lucas Zavalia,
Florida State University, Tallahassee, USA, Irzavalia@fsu.edu; Arie Gurfinkel, University of Waterloo, Waterloo, Canada,
arie.gurfinkel@uwaterloo.ca; Jorge A. Navas, Certora Inc, Austin, USA, jorge@certora.com; Grigory Fedyukovich, Florida
State University, Tallahassee, USA, grigory@cs.fsu.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART410

https://doi.org/10.1145/3763799

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

https://orcid.org/0000-0001-7341-0412
https://orcid.org/0000-0003-0549-2238
https://orcid.org/0000−0002−5964−6792
https://orcid.org/0000−0002−0516−1167
https://orcid.org/0000-0003-1727-4043
https://doi.org/10.1145/3763799
https://orcid.org/0000-0001-7341-0412
https://orcid.org/0000-0003-0549-2238
https://orcid.org/0000−0002−5964−6792
https://orcid.org/0000−0002−0516−1167
https://orcid.org/0000-0003-1727-4043
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763799
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763799&domain=pdf&date_stamp=2025-10-09

410:2 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

This, in turn, could allow malicious agents to reveal critical information about the kernel’s memory
layout. Similarly, if an EBPF program were to crash, the kernel itself may crash as well. Thus, EBPF
requires all programs to be verified to ensure that no vulnerabilities occur.

Although formal verification of software is challenging in general, some limitations on the ex-
pressiveness and complexity of EBPF programs make it more convenient to verify them. Specifically,
EBPF programs cannot allocate memory dynamically; they can access only a certain number of
memory regions, use a single thread only, and have an upper bound on the number of instruc-
tions [24]. Even then, there remain many aspects to EBPF programs that still present a challenge
for verification, such as the extensive use of pointer arithmetic and register spilling [24].

Two common verifiers in use today are the Linux Verifier [1] and PRevAIL [24]. The former runs
inside the kernel and verifies the safety of EBPF programs by exploring all possible execution paths
while tracking register values and certain memory contents. However, its verification approach is
conservative and heuristic-driven rather than being grounded in formal theory, which can lead
to both unnecessary rejections and inefficiencies in certain cases, for example, path explosion
in loops and unbounded state growth handling multiple execution paths. PREVAIL is based on
Abstract Interpretation, and thus is more efficient than the Linux Verifier. However, verifying an
EBPF program involves performing numerous computationally expensive checks, all of which must
be conducted within a secure environment. The secure environment must trust the verification
process, but the complexity and computational cost of these intensive verification procedures make
this impractical. Neither approach is user-friendly: they generate either verbose or no verification
logs, making it difficult for users to debug unsafe programs.

Our goal is to avoid having to deploy the entire verifier’s codebase in a secure environment. OQur
approach, inspired by Proof-Carrying Code (PCC) [37], separates the process of generating a proof
from the process of validating it. At a high level, the process of generating proof certificates is
carried out in userspace, while a comparatively simpler process running in the secure environment
uses the proof certificates and a validation algorithm to trust the code with which it was sent. Type
systems are particularly well-suited for implementing PCC architectures. Powered by algorithms
for both type inference (i.e., generating proof certificates) and type checking (i.e., validating proof
certificates), they offer a reasonably efficient static verification method.

In this paper, we present a type system for EBPF and two safety properties, namely Region Safety
and Information-Flow Safety. Region Safety ensures that no memory access happens outside the
bounds of the program’s designated memory regions. Information-Flow Safety ensures that no
sensitive information (for example, pointer addresses) is exposed to the user. In order to conduct
these safety checks, we use a low-level, flow-sensitive, refinement type system for bytecode repre-
sentations of EBPF programs. Flow-sensitivity [5, 6] tracks the type of a variable based on its use
in different branches/basic blocks, allowing a variable to have multiple types at various points in
the program. Information-flow safety requires that pointers are never stored in a memory region
accessible to the user. Flow-sensitivity enables determining the type of data stored at each store
instruction. Refinement types [21, 43] enable fine-grained information about program states to be
encoded as types using quantifier-free first-order predicates. Predicates could express, e.g., that a
variable is a number whose value is within a certain range. Our analysis relies on this to check for
region safety, i.e., by asserting that no memory access happens outside of a designated region and
using refined types to guarantee that a pointer is within a certain range of possible values.

Our type-inference approach explores the control-flow graph (CFG) of an EBPF bytecode. It
infers types for each instruction in each basic block that represent information about the program
registers and memory cells. It automatically handles branching in the graph, inferring types at
join points as the least upper bounds of the types from each path. When a type at a program
location cannot be inferred, a type error is generated, stating that the program might be unsafe. The

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:3

result is either a program fully annotated with types (in case of successful inference) or a partially
annotated program (in case of failure). Type annotations improve debugging by allowing users to
track information at each program point. They help users identify the root cause of verification
failures and determine whether they deal with actual bugs or false positives. Users get a chance to
learn about program behaviors without prior knowledge of the specifics of the underlying type
system.

Once the types have been inferred and the information about the applied rules has been stored,
a type-checking procedure could easily validate the types at each program location in linear time
with respect to program locations.

We implemented our type inference algorithm in a new tool called VEREFINE utilizing PREVAIL’s
parsing backend. The implementation of VEREFINE is over 9000 lines of C++ code. We evaluated
VEREFINE against PREVAIL on a set of 420 publicly available benchmarks, including benchmarks
from industry-based projects (i.e., Linux, Cilium, OVS, Falco, Suricata, Prototype-Kernel, and Beyla).
VEREFINE automatically verified a comparative number of benchmarks as PREvAIL. It took only a
fraction of the time taken by PREvVAIL and provided better debuggability capabilities to users.

To sum up, our work improves EBPF program verification in the following aspects:

(1) Our PCC-inspired infrastructure for EBPF region and information-flow safety verification
requires only proof-checking to be done in a secure environment, while computationally
intensive proof-generation is done in the userspace.

(2) Our flow-sensitive, refinement type system to check the safety of EBPF programs, along with
an algorithm for inferring variable types, demonstrates successful adaptation of techniques
developed in prior work for EBPF and other languages.

(3) The EBPF programs annotated with types improve the debugging capabilities without requir-
ing them to understand the underlying type system to find the root causes for failures.

(4) The new VEREFINE tool automatically handles EBPF benchmarks from industry-based projects
faster than the state-of-the-art PREVAIL verifier.

2 Motivating Example

Fig. 1 gives an example bytecode with type annotations. We write r1 : stk[506] to mean that
register r1 contains a pointer to a memory region stk at offset 506. Here, stk[506] is a type
annotation for r1. We write stack[a-b] to represent a stack cell at a valid address a with width
(b-a+1). Similar to type annotations for registers, a cell stack[a-b] can be annotated with a type
t, stated as stack[a-b] : t that represents that cell stack[a-b] stores type t. Annotations are
colored in red to distinguish them from the actual bytecode in Fig. 1. Initially known types are given
before basic block bb@ (lines 1 and 2). Variables s; (where each i is a number) represent symbolic
numeric values. Any relevant variable types updated or accessed by an instruction, but which
cannot be shown with the instruction itself, are shown after it. All extra annotations not shown
with the instructions are highlighted in yellow to distinguish them from the actual bytecode.
With these type annotations, the verifier reports an error at line 22: “Map key size is not
singleton”, a false positive result (the program is safe but reported unsafe). We only show the
relevant parts of the bytecode for brevity. The cause of the error is that the second argument,
r2, to map_lookup_elem should point to a memory location storing a known numeric value, but
it does not. The error roots back, through a series of stack loads and stores and assignments to
the probe_read function call at line 4. The probe_read function allows programs to safely read
memory from an arbitrary user-space or kernel-space address pointed to by r3 of size r2, and store
the read contents in the memory location pointed to by r1. Since the memory address is arbitrary,
it might not always be possible to model the location as a pointer in the analysis; hence, r3 is safely

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

410:4 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

1 r1 : stk[506], r2 : num(2), r3 : num,
2 r6 : map,, r1@ : stk[512] 5 bb2:
3 bbo: 16 r1 : num = *(u32 *)(rie - 44);
4 re : num = probe_read(17 *(u32 *)(r10 - 4) = r1;
5 r1 : stk[506], r2 : num(2), 18 stack[508-511] : num
6 r3 : ;
num) 19 r2 : stk[512] = r10;
7 stack[506-507] : num 20 r2 ¢ ostk[508] += -4;
8 goto bbi; 21 ri : map, = ré6;
22 reo : num = map_lookup_elem(
10 bb1: 23 r1 : map,, r2 : stk[508]);
oorl o num = x(ul6 Xy (r1e - 6); 24 stack[508-511] : num
12 *(u32 *)(r10 - 44) = ri;
25 goto EXIT;
13 stack[468-471] : num
14 goto bb2;

Fig. 1. Example type-annotated bytecode where the analysis produces a false positive result.

typed as a numeric value. The analysis cannot statically infer the contents read, which should be a
known numeric value, and it later manifests as an error at line 22.

We explore the root cause of the error with the help of annotations produced by the type analysis.
The type of stack[508-511] (annotation given at line 24) indicates that the issue relates to the
stack store operation at line 17 and, further, to the load operation at line 16. Tracing back to line 12,
we identify the store operation at the stack memory location (r1@ - 44), and further the load
operation from location (r1@ - 6) to be relevant, benefiting from the annotations. Finally, we
find line 4 containing probe_read function call that stores a number at location (r10 - 6) (or
offset 506 in stack), but without knowing an exact value. This helps us understand that the error is
a false result due to a lack of precision when analyzing probe_read.

To sum up, this example demonstrates the utility of type annotations in debugging EBPF programs.
The root cause and the location of the error often span across multiple basic blocks. Our type
annotations help in tracing the error back to its root cause, which is difficult with only error
messages and limited debugging information provided by existing tools. For comparison, in Sec. 7.1,
Fig. 11 gives the debug logs returned by PREVAIL (so-called invariants) for the same example, which
do not provide insights to the developers.

3 Background on eBPF

EBPF programs are typically written using a restricted dialect of C or Rust. The EBPF subsystem
requires a very specific compilation process in which EBPF programs are compiled to an intermediate
bytecode. The original BPF would run the bytecode in an interpreter inside the kernel; EBPF, on
the other hand, has upgraded to a JIT compiler instead of an interpreter. A requirement for the
EBPF ecosystem is that the EBPF programs must be formally verified to be safe before running in
the kernel space.

To transmit data back to the user space, EBPF relies on BPF maps, which are key-value data
structures accessible from both kernel and userspace. EBPF programs can interact with maps as
well as various other EBPF data structures through a library of helper functions.

The eBPF instruction set is given in Fig. 2. The syntax closely follows the notation used in the
documentation for EBPF instructions [2] with some differences involving memory (loads and stores)
and jump/branching operations.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:5

There are 10 general-purpose

registers labeled ro,..., r9, and P=I;P|I Bu=R~C

one specialized read-only register | = *A %5z C| Rizsz + A C:=Rln

r10, which contains a stack frame | R:=E|assume B|goto L @ € {x/,],8<<>>>>>% "}
pointer. Memory operations use the lgoto LL|f(Co,....Cn) ~ € {htobe htole, bswap,neg}
notation : =,, that show access with R ==r@|r1|r2|r3|r4|r5 ~e {= % < <, >, 2}

sz bytes. The goto and assume op- |r6|r7[r8[r9|rie nez

erations are not part of the standard E :=C | ~(R) | loadmap_fd n sz € {1,2,4,8)

EBPF instruction set. The goto with |[R® C|R+C L € Labels

a single target mimics an uncondi- A == (R+n) | (R-n) f € BpfHelperFunctions
tional jump to another basic block.

The goto with two targets, together Fig. 2. Grammar for EBPF instructions.

with the assume statements, mimic

conditional jumps to two different basic blocks (a branch). The assume statements at the beginning
of each block encode the condition under which the flow jumps to the block. Calls to EBPF helper
functions are expressed in C-style notation, i.e., f(Co, ..., Cp).

Every EBPF program can access a set of memory regions. The stack region has a fixed size, 512
bytes, and is used for register spilling, scratch memory, and transferring parameters to EBPF helper
functions. The context region is fixed-size (size known at compile-time) and contains information
passed to it by the point in the operating system where the program is attached. The precise layout
of the context region depends on the specific attachment type specified in the EBPF program [42].
When the EBPF program involves networking, the context region contains important information
about the network packet, namely pointers identifying the beginning of the packet, the end of
the packet, and the beginning of the metadata associated with the packet. The size of the packet
region is unknown at compile-time, hence the above packet pointers are needed for packet region
bounds reasoning. Finally, a memory region is called shared if it is created in an EBPF program
when either 1) a value from a map is looked up using a map key, or 2) there is an access to an
implementation-specific variable (called platform variable) to provide runtime information to the
EBPF programs [3]. Both map values and platform variables enable information flow between the
kernel and userspace. As expected, multiple shared regions can be generated by an EBPF program.

4 Programming Model

This section introduces EBPF types and environments to be used in type rules in Sec. 5.

4.1 Types

The syntax for types in our type system is given in Fig. 3. Types can be assigned to both registers
and memory cells. We collectively refer to these as variables. Types are broadly characterized into
pointer types, numeric types, maps, and function types. In addition, the types ANY and NONE are the
top and bottom types for the type system, respectively. The type num represents a value interpreted
as an integer, while types p represent values interpreted as pointers to some memory region. These
types are further refined using {v : num | ¢(v)} and {v : p | ¢(v)}, respectively. The variable v
is called the value variable and must occur in formula ¢. To accommodate the BPF map type, we
use the notation map;, where i indicates a unique numeric index for the map. The EBPF helper
functions are typed as 7y X ... X 7, — 7.

Terms are broadly characterized as numeric terms t, and pointer terms t,. Numeric terms consist
of integers n and symbolic variables s;. Variables s; are referred to as slack variables [12] and are
considered global and static. We use slack variables to encode interval/range types as well as to
track offsets for packet pointers. Pointer terms consist of additional symbols meta, begin, and end,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

410:6 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

(Types) tu=1y X -+ - %X 7] > 7 | 7
(Types) 7’ =:=r | ANY | NONE | map; | {v:r | ¢}
(Refinable Types) r == p | num
(Region Types) p == pkt | stk | ctx | shared;
(Constraints) g =@ A@ | th %ty | tp = tp | v="1tn | offset(v) =tp | s; € [n,m] | T| L
(Numeric Terms) ¢, ==t, £ty | n | s;
(Pointer Terms) ¢, == tp + t,, | meta | begin | end

(Integers) n,m € Z, (Naturals) i € N, (Comparisons) ~ € {=#<,<,>>}

Fig. 3. Grammar for EBPF types.

1 r1 : {pkt[begin+so] | so € [0,4]}

2 r2 : pkt[end] 6 bb1:
7 assume(r3 <= r2);

3 bbo:

4 r3 . {pkt[begin+so] | so € [0,4]} := r1; 8 r1 : {pkt[begin+sy] | begin+so+8 < end A sy € [0,4]}
5 r3 : {pkt[begin+so+8]|sy € [0,4]} += 8; 9 re : num :=g *x(rl1);

6 goto bbi;

Fig. 4. Motivation for using slack variables.

which are used to represent offsets for the beginning of the metadata region before packet, the
beginning of the packet, and the end of the packet region, respectively. Note that for all EBPF
programs, we assume that meta < begin < end.

The language of constraints is built out of the language of terms. Specifically, it supports com-
parisons between numeric terms and comparisons between pointer terms. The possible values for
slack variables can be restricted to be in a specific interval of integers, written s; € [n, m]. There are
distinguished equality comparisons v = t, and offset(v) = t, that constrain the value variable for
refined types; in practice, a valid refined type must have exactly one such constraint. We distinguish
between v and offset(v) because numeric types refine the value they represent directly, but pointer
types refine the offsets of pointers. Finally, constraints consist of conjunctions of other constraints
or logic constants T and L. Refined types by constant L are considered a type error and reflect
scenarios where there is contradictory information about a piece of data.

It is convenient to introduce syntax sugar for common types and give auxiliary definitions:

num(t,) = {v:num | v =t,}
{num(t,) | ¢} = {v:num | v =1, A ¢} where v & Vars(¢p)
plipl = (v p | offset(v) = 1y}
{pltp] | o} ={v: p | offset(v) = t, A @} where v & Vars(p)

the set of all types generated by the grammar in Fig. 3: 7 = L(7),
the set of all instructions generated by the grammar in Fig. 2: 7 = L(P),
the set of all registers: V = {ro,...,r10},
the set of all region types: R = {ctx, stk, pkt} U {shared; | i =0,1,2,...},
the set of standard sizes: S = {1, 2,4, 8}.

To motivate slack variables as compared to intervals, Fig. 4 gives a snippet with the safe load
operation at line 9. Because constraint begin + so + 8 < end holds at line 7, an access of 8 bytes

at pointer location pkt[begin + sy] is safe. By contrast, if intervals were used, the type of r3 after
line 5 would be pkt[begin + [8, 12]]. This type at line 7 implies constraint begin + 8 < end because

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:7

the intervals represent numeric values in multiple executions of a program. This causes the load
operation at line 9 to fail as the type of r1 is pkt[begin + [0, 4]]. Since safety verification takes into
account all possible executions, one of the executions might do an access at begin + 4 for 8 bytes,
which fails given begin + 8 < end.

The slack variables provide no more information than intervals; however, their specific use case
improves the analysis. Intuitively, the slack variables mimic the sense of a single execution out of
multiple executions. They enable a pattern of “check” and “use”, where slacks relate the “check”
(assume applied to r3 at line 7) to the “use” (Load operation to r1 at line 9). Sometimes, instead
of using slack variables, we could directly relate registers (for example, at line 4, relate r3 and
r1 through the equality relation). However, this is not guaranteed to work in the flow-sensitivity
setting, as registers may get assigned at any point, and such relations might then be incorrect.

Such an analysis could also be done using a Single Static Assignment (SSA) encoding for the
program. Since variables in SSA encoding only get assigned once, variables could directly be
used inside the refining constraints, instead of using slack variables. However, slack variables
target a very specific use, i.e., to ensure that packet accesses are within bounds. For whole EBPF
programs or parts of EBPF programs not dealing with packet pointers, using an SSA encoding might
be an expensive operation. Furthermore, EBPF programs are commonly, though not exclusively,
distributed in compiled object file format, and as such, we cannot assume access to high-level
intermediate representations like LLVM IR that are often used to obtain SSA forms. Thus, a complete
SSA encoding must be generated from raw bytecode for every individual program, which is both
impractical and unnecessary for our verification goals. Our slack variable approach thus provides
a lightweight and on-demand substitute for SSA, applied only where needed to ensure memory
safety without imposing a heavy transformation burden on the entire program.

4.2 Environments

Refinement types have been successfully applied for verification in the context of functional
languages that are stateless and where mutation is not allowed. But in the context of a low-level
imperative language, program variables may change, possibly invalidating the refinements in a
type. Thus, in our type system, the judgments about the typing of instructions are relative to the
instruction’s position in the program. This means that it needs an ability to “update” and “access”
the typing of a register. To capture such behaviors, we define the type environment I' as follows:

DEFINITION 1. A type environment I' € V X T is a mapping from the set of registers V to types
7. To update the type of a register R in T', we write I'[R +— 7]. To access the type of a register R stored
inT, we write I'(R).

In addition to T, the type system needs an abstract representation for the memory regions of
the EBPF programs. We model the memory regions as tuples containing a region type p € R \ pkt,
a natural number size, representing the size of the region p, and a set of cells that contain the
type/size/offset triplets representing the data stored in the region. The packet region is excluded
from this definition, as its size is unknown at compile time.

DEFINITION 2. Let R = (p, size,, C,) be a tuple where p € R \ pkt is a region type, size, € N is
the size of the region, and C, € 7 X N X N is the set of tuples representing memory cells. Then, R is a
region if V(1,sz,i) € Cp, i+ sz < size,,.

In this context, we abuse notation slightly by using the region type identified by p as a label
to identify regions so as to minimize the symbol usage and because each EBPF program has a
well-defined number of regions. The EBPF memory environment constitutes the set of memory

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

410:8 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

regions, defined by the context region (labeled ctx), the stack region (labeled stk), and possibly
multiple shared regions (labeled shared; for some index i).

DEFINITION 3. A set A of memory regions is an EBPF memory environment if it meets three
conditions: (1) there is exactly one region R € A with p = ctx, (2) there is exactly one region R € A
with p = stk, and (3) there are zero or more regions R € A of the form p = shared; each with a unique
index i € N.

EBPF programs begin in a well-defined initial state. Below we give some intuition for how the
initial state is encoded in our abstractions of EBPF programs (written I},;; and A;pi;) and how
these evolve throughout the analysis of the program. The registers of all EBPF programs begin
in the same state, while the initial state of the memory regions, specifically the context region, is
determined by the EBPF program’s attachment hook inside the operating system.

(1) Initially, r1 always points to the context region at offset 0, and r10 points to the top of the
stack. [j,;; (r1) = ctx[0], Tinir (r10) = stk[512]. All other registers are set to ANY in ;.

(2) The stack region is initially empty (Cs = 0), and A;;; contains an entry (stk, 512, 0).

(3) The contents of the context region, Cetx, are deduced using a tuple of four natural numbers
called the context descriptor D = {sizec, m, b, e}, where size.x represents the size of the
context region, and m, b, e numbers represent the locations inside the context where packet
pointers pkt[meta], pkt[begin], and pkt[end] are stored, resp. C.sy is defined as follows:

)0 ifm=b=e=-1
o= {(pkt[metal, 4, m), (pkt[begin], 4, b), (pkt[end],4,e)} otherwise

Ajnir contains an entry (ctx, sizec;x, Cetx). The packet pointers are stored as 4 bytes.

(4) For each shared region labeled shared;, its sizeshareq; is known at compile time, and its content
is initially empty. Hence A;p;; contains entries (shared;, sizeshared;, 0)-

(5) We allow “strong updates” through stack pointers due to their role in register spilling and
keeping track of parameters for EBPF helper functions. The contents of the stack region, Cyyk,
are tracked throughout the analysis. The contents of the other regions are not needed for our
analysis, and we do not track the strong updates through their pointers to keep the analysis
simpler. Once their initial states are defined, no more updates happen. However, we always
care about the region safety and information-flow safety for all regions when load and store
operations are analyzed. We discuss this in more detail in Sec. 5.

When performing the load and store operations on memory regions, an extra “overlap” function
is required. For any region p, given an offset n and width sz of a memory operation, it checks
whether any cells are already present in the region in the offset range [n,n + sz — 1].

DEFINITION 4. Let A be an EBPF memory environment, n € N be an offset, and sz € S be the width.
Then, the set of overlapping cells OVERLAP, (sz, n):

OverLAP,(sz,n) ={(7',sz",i) € Cp | [i,i+sz' —1] N [n,n+sz-1] # 0}

When updating a memory region p with a cell (7, sz, n), intuitively, we exclude all cells in C,
that overlap with (z, sz, n), and then insert (z, sz,n) in C,,.

DEFINITION 5. Let A be a memory environment, T € T be a type, n € N be an offset, andsz € S
be a width. Then, an update A, [7, sz, n] to a memory region p € A:

Aplz,sz,n] = A\ {(p,sizep,Cp)} U {(p, sizep, Cp \ OVERLAP,(sz,n) U {(7,52,n)})} (1)

As discussed before, we only allow updates to the stack region, we only use A, [, -,] for p = stk.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:9

ATVE:T ne [-2%,2% - 1] I'(R) =t
T-AssiGN ——— 'Num —— T-REG
ATHFR:=EAAT[R- 7] AT+ n:num(n) ATHFR: T
AT, X0 : 70,3 Xn i Tn b fiTgX ... XTp > T
T-Fun
AT v f(x0,...,%xn) A A',F[r‘@ — 7,r1 > ANY, ..., r5 > ANY|
T-GoTo2 T-Goro1l
AT +goto Ly,Ly HA,T AT Fgoto LAA,T

AT +R: {num(t,) | ¢}

AT AN T N, T rip 40", T” AT |= 7 = INTERVALIZEU(~, {num(#,) | ¢})
e T-SEQUENCE T-UNARY
AT Fi;4A”,T ATF~R: 7T

AT+ Coy: {num(t,) | ¢} AT FCy: {num(t;) | ¢'}
ATFCy=Cr:{num(t, ££,) | @Ao'}

T-BINARY

AT FCo: {num(t,) | ¢} AT FCy: {num(zt;,) | '}
AT |= 7 = INTERVALIZEB(®, {num(¢,) | ¢}, {num(z,,) | ¢'})

T-BINALT
AT+FCy®Cy: T
ATFR:{p[tp] | ¢} ATFC: {num(t,) | ¢’}
T-PTRNUM
ATFR:C: {pltpxta] |@r¢"}
ATrRi:{pltp]l 1@} ATFRy:{plty]l| ¢’}
; T-PTRSUB
AT+ Ry =Ry {num(tp — 1) | o1 A 2}
AT+ Ry : {num{t,) | ¢} AT FRy: {num(z,) | ¢’}
T-AssuMENuUM

AT+ assume(R; ~ Ry) A A, T[Ry = {num(t,) | thy ¥ t;, Ao Ap'}]

ATrRi:{pltpl @} ATFRy:{plt,] ¢’}
AT+ assume(Ry = R2) 1 AT[Ri = {pltpl [tp = t, Ao A @' }]

T-AssUMEPTR

ATHFR :{v:r| ¢} v & Vars(y)

932 ATFRy: : ! Fo =
n e [0, 2%] T Map 2 {v:irle’} =Y T-Prop
AT + loadmap_fd n : map,, ATrRy:{v:r|e Ay}

Fig. 5. Type rules for control, arithmetic, and logic instructions.

Finally, an EBPF memory environment A together with a type environment I' can make the
following judgments: type assignment (A, T + x : 1), type equality (A, = t = 7’), subtyping
(AT E 1 <: '), and type/memory environment update (A, T + ¢4 A',T”).

5 Type Rules

In this section, we explore the rules that make up our type system.

5.1 Arithmetic, Control and Logic Instructions

We begin with the rules for arithmetic, logic, and control flow instructions. The rules are given
in figure 5. For brevity, we use the abbreviations @ and ~ as defined in Fig. 3. Rule T-AssiGN
handles an assignment of one register to another, updating the type of the destination register to
that of the source register. The rule T-NuM is used to type an immediate value in an expression,
while rule T-REG is used to type a register in an expression. All numeric values are integers in

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

410:10 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

Algorithm 1: INTERVALIZEB: Procedure for simplifying numeric types

Input: An operation &, a type 79 = {num(t,) | ¢}, a type 71 = {num(z},) | ¢’}
Output: A type {num(s;) | s; € [aj, bj]}
1 (Sig + - +Sg, + 10, Sig € [aig, big] A+ A sy € [a,, b,]) < NORMALIZE(7)
2 (sip +- - +sg, +n1, sy € [ai, by] Ao Asg, € [ag,, bk,]) < NORMALIZE(71)
3 [fo,uo] < [ai, + -+ ag, +no, bi, +"’+bk0 +no|
4 [fl,ul] — [a,-l +otag, 0, b,’l +"’+bk1 +n1]
5 aj < min({u®v | (u,0) € [fo,uo] X [€1,u1]})
6 bj — max({u®o | (u,0) € [f,uo] X [£1,u1]})
7 return {num(s;) | s; € [aj, bj]}

Algorithm 2: INTERVALIZEU: Procedure for simplifying numeric types

Input: An operation ~, a type 7 = {num(t,) | ¢}
Output: A type {num(s;) | s; € [aj, bj]}
1 (si+---+sp+n, si €lap,bi] A+ Asp € [ag, br]) < NORMALIZE(T)
2 [Lu] < [aj+---+ar+n, bj+---+bg +n]
3 aj — min({~u | u € [£,u]})
4 bj «— max({~u|u € [£u]})
s return {num(s;) | s; € [aj, b;]}

the range [—2%, 2% — 1]. Rule T-SEQUENCE allows the sequential composing of instructions. Rule
T-FuN represents an invocation of a BPF helper function and checks that all arguments passed to
the function match with the function’s declared type. T is updated according to the EBPF calling
convention, the return value is stored in the register ro, the registers r1 through r5 are used for
passing arguments. Thus, their values are not preserved by the function call itself, and they get
type aNy. Rules T-GoTol and T-GoTo2 handle branch/jump instructions. Such instructions are
always considered well-typed as branch conditions are instead encoded in the assume instruction.

For the arithmetic rules, we carefully restrict the arithmetic that pointers engage in. It is pos-
sible to subtract or add a number to a pointer, updating its annotated offset (T-PTRNUM). Rule
T-PTrSUB allows us to subtract pointers resulting in a numerical value of the signed integer type
(i.e., ptrdiff_t in C/C++). Rule T-BiNARY is used for addition and subtraction of numeric registers.
Since the grammar for numeric types only allows addition and subtraction of terms (to keep types
simple), we use rule T-BINALT for all operations other than addition and subtraction. Note that
operations of the form @= are typed by applying an arithmetic rule and then T-AssIGN, so we do
not enumerate rules for such instructions. If we have numeric types 7; and 7, and an operation @
to apply, the idea is to convert both 7; and 7, to an equivalent representation with no slacks, that is,
only intervals. We then apply the operation & to the computed intervals to get the result. This way,
no @ operator appears in the types. For this purpose, we define an auxiliary function INTERVALIZEB
(Alg. 1) and construct a new resultant type of the form {num(s;) | s; € [a;, b;]}, where [a}, b;] is
the computed interval. Similarly, rule T-UNARY uses INTERVALIZEU (Alg. 2), which takes as input
a single numeric type 7 and a unary operation ~, converts 7 to an only-interval representation,
and applies operation ~. Both auxiliary functions make use of the NORMALIZE function, which
transforms the types {num(z) | ¢’} or {p[t] | ¢’} into a tuple (t, ¢), where ¢ is a weaker formula
than ¢’ only containing the definitions of slacks while skipping any other constraints. In the term
t, subtraction can be written as addition without loss of generality. We do not apply the NORMALIZE
function to non-refined types.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:11

Instruction loadmap_fd takes a 32-bit number n for a map and constructs a map,, type. In EBPF,
all other interactions with maps must utilize BPF helper functions; thus, T-MAP is only used to
introduce maps. Rules T-AssuMENUM and T-AssUMEPTR introduce a new relationship between two
data types and store this information in the constraints of one of the input registers. Rule T-Prop is
used for transferring constraints between types and is used when a register requires a constraint
that refines another register. This rule can be applied non-deterministically many times; hence, it is
only used in a restrictive manner, explained in Sec. 5.4.

5.2 Region Safety and Information-Flow Safety

Before the load and store operations (to follow in Sec. 5.3), we need to check whether a certain load
or store operation is allowed. In this section, we introduce important terms and checks used for
these operations. Our analysis is designed to verify two safety claims about load/store instructions:

(1) Region Safety: Every load or store instruction must only access data within the boundaries
of a memory region.
(2) Information-Flow Safety: No load or store instruction may expose sensitive information, for
example, bits of a pointer to the userspace.
To check region safety, we consider the specific memory region for the desired load/store. For the
context, stack, and shared regions, we define a predicate Bounps : Nx 7~ — {T, L} that guarantees
that an offset is between zero and the size of the region and is defined according to the following
inequality:
Bounps(sz, {p[tp] | ¢}) = 0 < Ib(tp, @) < ub(tp, @) +sz < size, (2)
where Ib(t, +1t,, ¢) = 1b(tp, @) +1b(t, ¢) ub(ty +1t,, @) =ub(ty, ¢)+ub(t,, ¢)

Ib(tp = tp, @) = 1b(tp, @) —ub(t,, ¢) ub(ty—t,, @) =ub(ty, @) —1b(t,, ¢)
Ib(si, p) =mforop = s; € [mn],n,meZ ub(s;, p) =nforp =s; € [mnl,nmeZ

Ib(n, 9) =n ub(n, p) =nneZ

The check in Eq. (2) is not sufficient for determining the region safety of memory accesses to
the packet region because the exact size of the packet region is not known at compile time. Note
that we do not define the /b and ub operations for the offset symbols meta, begin, and end since
the BounDs predicate is not intended to be applied to packet pointers. To properly check packet
memory accesses for region safety, we require reasoning using constraints present in refinement
types of packet pointers. Consider a packet pointer refined by a formula ¢ written as {pkt[t,] | ¢}.
To check that access of sz bytes at offset ¢, is safe, the following checks are required:

® = meta < tp ¢ = tp+sz<end
Recall that meta, begin, and end are offset symbols that refer to the metadata, beginning, and
end of the packet region. Intuitively, the refinement ¢ must be strong enough to show that the
lower bound of #, is at least meta and that the sum of the upper bound of ¢, and sz is no greater
than end. Given these two conditions, we formally state the definition for region safety:

DEFINITION 6. Let T, A be a type/memory environment and let 1 be a load or store instruction (i.e., i
has either the form R :=;, A or *A :=g, C). We say 1 is region safe if

(1) either AT v A:{plty] | ¢} and p # pkt and Bounps(sz, {p[t,] | ¢}) holds

(2) or A,T + A: {pkt[t,] | ¢} and ¢ = meta < t, At, +sz < end

We have shown how the region safety is enforced for different regions. We now discuss how
the information-flow safety is enforced. The context, packet, and shared regions might be a cause
of leaking sensitive information from the program to the userspace; hence, storing pointers to
these regions is disallowed. However, numeric values are allowed to be stored. As stated earlier,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

410:12 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

AT +A: {pkt[ty] | ¢} AT + E : num(t,) sze S ko= meta<t, Fo = tp+sz<end

T-Px1ST
AT F#A:=EAAT
AT + A :shared;[n] AT+ E : num(ty,) sze S BounDs(sz, shared;[n])
T-SHAREDST
AT F#A:=E4AT
AT FA:ctx[n] AT+ E : num(t,) sz€ S BounDs(sz, ctx[n]) OVERLAPx(sz,n) = 0 TCrxST
AT+ #A:=,E 4 AT et
AT+ A :stk[n] ANTHE: T sz€ S BounDs(sz, stk[n])
T-STST
AT b %A:=g,E 4 Agi [7, sz,n],T
AT +A:{pkt[tp] | ¢} sze S ko= meta<ty Fo = tp+sz<end
T-PxTLD
ATFR:=; A4 AT[R+ num]
A,T + A : shared;[n] sze S BounDs(sz, shared;[n])
T-SHAREDLD
ATFR:=; A4 AT[R+ num]
AT FA:ctx[n] sze S AT |= A(ctx, sz,n) =1 AT |= 7 # NONE BounDs(sz, ctx[n]) CrxLD
-CTX
ATHFR:=; * A4 AT[R— 7]

AT+ A:stk[n] sze S AT |=A(stk,sz,n) =7 AT |= 7 # NONE BounDs(sz, stk[n])

T-STKLD

ATHFR:=; * A4 AT[R 7]

Fig. 6. Typing rules for load and store operations on various memory regions.

we assume that any numeric values stored in these regions are not important for the analysis,
hence we never update the state of context and shared regions in A (A, [, -, -], defined in Eq. (1), is
never called for these regions). Similarly, when loading from these regions, the loaded values are
assumed to be numbers. Note that an exception to this rule is context region loads when loading
the pre-defined packet pointers, which is allowed when loading exact pointers (same offset and
size), otherwise, the load is disallowed.

The stack region does not have the same restrictions, since the stack region is used by EBPF
programs for register spilling. Therefore, loads and stores to the stack region must be handled
accordingly. When storing in stack region, we use the update procedure Agx [, -, -] (Eq. (1)) which
makes sure that overlapping cells are also removed. This is important for the information-flow
safety, as the overlapping cells are assumed to be information that has gone out of scope, which
may also contain pointers. If overlapping cells are not removed, it may cause bits of out-of-scope
pointers to be read from stack, which is considered information leakage. Similarly, when loading
from stack region, it is assumed that only cells that are present in the Cy are loaded. Loading a
value that is already not in Cyy might cause a pointer to be read, which violates information-flow
safety. We defer the formal definition of information-flow safety to the subsection on load and
store operations, as it requires a formalization for such operations.

5.3 Load and Store Operations

Type rules for the load and store operations on memory regions are given in figure ??. We first
discuss the store instructions. Each type rule for them needs four general ingredients: a pointer A
to some memory region to perform the store at, an expression E being stored, a natural number
sz representing the number of bytes the data must occupy, and a condition guaranteeing safety.
For Rules T-PkTST, T-SHAREDST, and T-CTxST, E must be of type num. Rule T-CTxST needs
to additionally check that there are no overlapping cells that contain pointer information, i.e.,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:13

(OVERLAPx(sz, 1) = 0). Also, there is no need to update the state of A. In T-STKST, A is updated
using Age [+ - -]. The safety checks are conducted as described in Sec. 5.2.
For type rules for the load operations, we define an auxiliary “load” from a memory region.

DEFINITION 7. Let A be a memory environment, n € N be an offset, and sz € S be the width. Then,
aload from a memory region p € A:
where the VALIDLOAD predicate is defined as:
T if A(r,;sz,n) €Cp VALIDLOAD(p, sz,n) = V(10, $20, no) € OVERLAP,(sz,).
NONE else if p = stkA To <: nUMA
A(p,sz,n) = OVERLAP, (sz,n) = 0 , (sz0+1p <sz+n=

num else if VALIDLoAD(p, sz,) (71,521, n1) € OVERLAP (52, n).

NONE otherwise
szl+n1+1=n0)

The intuition behind the first three cases in A(p, sz, n) is as follows:

(1) The loaded type is 7, when there exists a cell in C,, which applies to p € {stk, ctx}. This is
the only way pointers are read from stack or context region.

(2) When p = stk, and there is nothing stored, then NONE is loaded.

(3) VaLIDLoAD checks that if there are overlapping cells, then they all must be 1) numeric types
and 2) continuous with no gaps between them. If the overlapping set of cells is empty, which
is the case for all shared regions, then the load is also valid.

The reason for the complexity of the load operation A(-, -, -) is because we want to be able to support
unaligned loads to the stack region but only as long as all of the stack’s memory cells involved in
the load are numeric.

Each type rule for load instructions needs three general ingredients: a pointer A to some memory
region to perform the load from, a natural number sz representing the number of bytes for the
data, and a condition guaranteeing safety. Memory safety checks are done similarly to stores. Rules
T-PkTLD and T-SHAREDLD always load a number. Rule T-CTXLD can load pointers (if one of the
packet pointers is loaded) or numbers (otherwise).

Given the definition for load operations, we now formally define information-flow safety as:

DEFINITION 8. Let I =1, ..., 1, be a sequence of instructions, with A;, I; be the environments right
before an instruction 1;. We call I information-flow safe if:
(1) Thereis no; with 0 < i < n such that ; has the form xA =5, C such that A;,T; + A {p’[t,] |
@'}, where p’ € {ctx, pkt, shared;}, and A;, T; - C : {p[t,] | ¢}
(2) If for some 1;, Ai(stk, sz,m) = {p[t,] | ¢} where1 < i < n then there exists i with0 < k <'i
such that i has the form *A =g, C with A, Ti + C: {p[t,] | ¢}

The first clause states that there exists no instruction that stores a pointer in the context, shared,
or packet regions. The second clause states that if at any point, a pointer can be loaded from the
stack region, then there must exist some store operation that stores the same pointer into the stack.

5.4 Application of Rules

In this section, we discuss the criteria for the application of rules defined in figures 5 and ??. There
are two important concerns to address. The first concern is, a register containing a certain set of
constraints needed later might get overwritten at any time. Transferring the constraints to another
register does not work, as we do not know with certainty which registers get rewritten without
looking ahead. We resolve this issue by introducing a ghost register rgpos, which is not used by
any actual EBPF program. rgpes exists to carry constraints in case we suspect a register might
get overwritten later in the program. When the constraint is needed, it is transferred back to the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

410:14 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

1 r1 : pkt[begin], r2 : pkt[end], r3 : {num(sg) | sp € [14,18]}

2 bbo:

3 r4 : pkt(begin] := ri; 3 T-Assign

4 r4 : {pkt[begin+so] | sy € [14,18]} += r3; 4 T-PtrNum, T-Assign
5 r4 : {pkt[begin+so+4]|sy € [14,18]} += 4; 5 T-Num, T-PtrNum, T-Assign
6 goto bbi; 6 T-Gotol

8 bb1l:

9 assume(r4 <= r2); 9 T-AssumePtr

10 r4 : {pkt[begin+sy+4] | begin+sy+4 < end A sy € [14,18]}

11 rehost : {Pkt[begin] | begin+so+4 < end A so € [14,18]} 11 T-Prop (r4 = Fgpost)
12 r4 : pkt(begin] := ri; 12 T-Assign

13 r4 : {pkt[begin+so] | so € [14,18]} += r3; 13 T-PtrNum, T-Assign
14 r4 : {pkt[begin+so] | begin+so+4 < end Asy € [14,18]} 14 T-Prop (rgpest — r4)
15 r4 : num :=4 *(r4); 15 T-PktLD, T-Assign

Fig. 7. Example of application of rules and use of register r o5 with T-Prop.

relevant register. Rule T-PRopP is used to propagate such constraints back and forth. However, the
second concern is, rule T-PrRoP can be applied non-deterministically many times. The algorithm only
uses the T-Prop rule in certain scenarios to keep inference deterministic. Firstly, after applying Rule
T-AssUMEPTR, use T-Prop to propagate the learned constraint to rgp.s. Secondly, before applying
T-PkTLD or T-PxTST, use T-PrOP to propagate the constraints from rgp,s; to the register used for
memory operation. For other rules, we apply them whenever they are applicable. Below, we show
an example of the application of rules.

Example 5.1. Consider the code snippet of a load from packet, given in Fig. 7. The assignments
r4 := ri (line 3 and 12) are typed using rule T-AssiGN, and operations like += (lines 4, 5, 13) are
typed as a combination of rules T-PTRNUM and T-AssIGN. In addition, line 5 requires typing the
number 4 as num(4) using Rule T-Num. At line 9, the T-AssuMEPTR rule is used, as both r4 and r2
are packet pointers, which updates the type of r4 with a new constraint. Notice that we apply the
constraint to only r4 but not r2. At lines 11 and 14, rule T-Prop has been used to propagate the
constraint begin + sy + 4 < end back and forth from registers r4 and rgp,s. The operation at line 15
is the combination of T-PKTLD and T-ASSIGN.

After line 9, the type of r4 contains sufficient information to prove that the memory access at
line 15 is safe, that is, begin + sy + 4 < end (shown at line 10). However, on line 12, the register r4
gets reassigned to r1, and the information gets lost. We apply the propagation rule after the assume
operation to propagate the information present in r4 to rg,g (result shown at line 11). Note that
we always keep rgpo5 to point to pkt[begin] for convenience. When the required information is
needed in r4, that is, for the load operation at line 15, we selectively propagate the constraints
needed back to r4 before the operation, and the resulting type for r4 is shown at line 14. Using the
propagation rule with rgp,g helps resolve such issues. In general, we only allow the propagation of
constraints in a restricted manner to keep the algorithm deterministic.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:15

Fe=¢
————S-ANYy ———— S-NoONE — S-REF
AT |= 7 <: ANY AT |=NONE <: T AT ={v:r|e}<{v:r|o¢'}

ATEn<nn ATER <1
S-NoNDET S-Eq
AT E{v:r|e}<r AT Eto=1

Fig. 8. Rules for subtyping.

5.5 Subtyping

Subtyping is necessary for the type inference algorithm’s join procedure. The rules for subtyping
are given in figure 8. The first rule, S-ANy, states that the type ANy is a supertype for all types, and
Rule S-NoNE specifies that the type NONE is a subtype of all types. These two rules define ANY and
NONE to be the top and bottom types, respectively. Rule S-REF states that a refined type is considered
a subtype of another refined type precisely when it contains a stronger constraint. Rule S-NoNDET
states that any refined type is a subtype of the generic type, that is, {num(z,) | ¢} <: num and
{pltp] | @} <: p. Lastly, rule S-EQ specifies that two types are equal precisely when they are
subtypes of each other.

We extend the concept of subtyping to environments. Given two type environments I'y and I3:

[<clhb ®VReV. I“l(R) <: FZ(R)

where R can be any of the registers, as defined in Grammar 2.
Given two memory environments A; and A,, we define A; <: A; as:

A <:Ay o VszeN,neN,peR.A(p,sz,n) <: Ax(p, sz, n)

5.6 Soundness

Our type system is sound but not complete. We guarantee the soundness of our type system by
proving a progress and a preservation theorem using call-by-value small-step semantics. Specifically,
we construct an abstraction for a program’s runtime states called the runtime environment (written
T,A) and define a relation - ~» - that relates two runtime environments if the left-hand side
evaluates to the right-hand side. From there, we define a relation, - = -, that relates the state of
the runtime environments to the state of the type system if the type system overapproximates the
runtime environment. We state the progress and preservation theorems.

THEOREM 1. (Progress) Let 1 € I be an instruction, for environments A, o, Ay and Ty if Ao, T F
1 4 A, Ty and let (Ag,Ty) be a runtime environment such that (Ao, Ty) = (Ao, To) then either 1 is
a goto instruction or there exists an instruction i’ € I and runtime environment (A1,I'1) such that
(AO, rO: l;l/) ~> (Ah rl; L/)'

THEOREM 2. (Preservation) Let 1 € I be an instruction, (Ay,To), (A1,T1) be runtime environments,

for environments Ao, To, A1, T1; if Do, To b o4 ATy with Ty =To,Ag =Ay and (Ao, To, 1;1) ~>
(A], Fl, l,) then F1 = Fl and Al = Al .

6 Type Inference And Type Checking

We have already defined the type rules in the previous section. The other two important components
of our type system are type inference and type checking algorithms, which are discussed in this
section.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

410:16 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

Algorithm 3: Join: Procedure for joining types

Input: Two eBPF types 7y and 71
Output: An eBPF type representing the joined type (written 7o & 77)
1 if 7y = 71 then

2 return 7y

selseif o ={v:rg| @o} A1 ={v:r1| @1} Aro=r1 # pkt then

4 (so+---+si+sj+---+sp+co, So € [ao,bo] A+ Asy € [an,bp]) < NORMALIZE(70)

5 (so+---+si+sp+---+sm+c1, so € [ag,bo] A+ Asm € [am, bm]) < NORMALIZE(1)

6 X {[a,b] | o = sx € [a,b],x € {j,...,n}} U {[co,co]}
7 Y « {[a,b] | p1 = sy € [a,b],y € {t’,...,m}} U {[cl,cl]}

8 [n,m] « [min(X|gpjex @ Llabley @) Max(X(aplex b Xapley D)]
9 Onew < So € [ao,bo] A -+ Asi € [aj, bi] A sg € [n,m]

10 thew <= S0+ -+ +S;+ Sk

11 if 7o = num then

12 return {num(tpew) | Pnew}

13 else if r) = p then

14 return {p[tnew] | Pnew}

15 else if

0 = {pkt[p+tp[,] | Omb, N\ Pbe, Ao} AT = {pkt[p+tp1] | Omb, N Pbe, A@1} Ap € {meta, begin, end}
then

16 (p+so+---+si+sj+---+sy+co, So € [ao,bo] A---Asy € [an, by] < NORMALIZE(7)
17 (p+so+---+si+se+---+sm+c1, so€ [ao,bo] A+ Asm € [am, bm] < NORMALIZE(77)
8 X {[ab]l]go=sc€lablxe{j....nt}U{[cocol}

19 Y « {[a,b] | p1 = sy € [a,b],y € {t’,...,m}}U{ cl,cl]}

20 [n,m] « [min(X[ap1ex a, Liapley @) max(X[aplex b, Ziapley b)]
21 (p;nb — WEAKERmb((Pmbo’ (Pmbl)

2 ¢, — WEAKERpe(@peys Phe,)

23 Pnew < S0 € [a(), bo] AN NSj € [ai, bi] N Si € [n, m]

24 thew <— S0+ -+ +S;+ Sk

25 return {pkt[p + thew] | (P;nb A qol’Je A Qnew}

26 else

27 return ANY

6.1 Joins

Thus far, we have only focused on type rules for individual instructions, but have not touched
upon the analysis in the presence of control flow. In this section, we discuss how type information
from two branches is reconciled or joined. A join operation & over two types 7y and 7y is defined in
Alg. 3. It has multiple cases.

In the first case (line 1), 7y = 71, and the algorithm returns rp without loss of generality. In the
second case (line 3), types 7o = {v : r | po} and 7; = {v : r | @1} are to be joined, and r # pkt.
The algorithm calls function NORMALIZE, which transforms the types into a tuple (¢, ¢), where ¢
contains the definitions of slacks while skipping any other constraints. Recall that the grammar for
types only allows addition and subtraction of terms, and subtraction can be written as addition
without loss of generality. For the two types to be joined, there is possibly a sum of slacks sy +- - - +s5;
that is shared by the term in both types, while s; + - - - + s, + ¢g and sp + - - - + 555, + €1 terms contain
slacks that may differ, including constants ¢ and c¢;. The algorithm extracts the interval values from
Sj+---+sp+coand s+ - +sp, +cq by replacing slack variables with the intervals they represent

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:17

and computes the join of these intervals (lines 6-8). Any slacks that are shared between the types
are not considered, in the hope of keeping any important information that might be required later
in the analysis. The algorithm then computes the joined term t,.,, and joined constraint @y
(lines 9-10). Depending on whether the types were numeric or pointers, it computes the joined type
(lines 11-14).

In the third case (line 15), the algorithm considers the join of packet pointer types. Most operations
are similar to the ones in the preceding case; however, there is an extra term p representing one of
the symbols meta, begin, or end. To compute the join, both types must contain the same symbol p.
There are additional constraints ¢,,,; and ¢p, which represent meta+t;, < begin and begin+tl',’ <end,
respectively. Since the join must keep the information common at both branches, we compute the
weaker constraints. For ¢,,;, and ¢p. constraints, we invoke the auxiliary functions WEAKER,,,;, and
WEAKERp, defined as,

01 if 9o = o1 ¢ if oo = ¢1
WEAKERpp, (91, 92) = | @0 if o1 = @0 WEAKERpe(¢1,92) = {¢0 if p1 = ¢o
meta < begin otherwise begin < end otherwise

These functions return the weaker of the two formulas, and if neither formula implies the other,
then a generic constraint such as meta < begin or begin < end is returned. We extend the concept
of joins to type environments and memory environments in a point-wise fashion. Given two type
environments I} and I, we define I} W T, as:

HuL={Rn¥n)|Rn) el ARrr)ecl} (3

Given two memory environments A; and A,, we define A; W A, as:

AW Az = {(p,sizep,Cp) | (1,52,n) € Cp &
El(p,sizep, Cpl) € Ay, (11,82z,n) € Cp,s (p,sizep,sz) € Ay, (12,82,n) € Cp,.t=11 ¥ 2} (4)

Eq. (3) states that the join over I's is the join over common variables in both. Naturally, we extend
the definition of join to a list of environments, W([Ly,...,[,,]) and W([A,...,A,]), by multiple
applications of W.

6.2 Type Inference

Our formal analysis of EBPF programs is primarily driven by type inference. Before presenting
the details of the algorithm, we assume the existence of a Control-Flow Graph G = (V, E), which
represents the structure of the program being analyzed. The V set represents the vertices (basic
blocks), and the E set represents edges (or jumps/branches). The graph G may contain cycles (loops)
represented using backward edges in the graph. For a deeper understanding of G and its properties,
we refer readers to [8]. Here, we provide only an intuitive definition of the relevant concepts used
in the algorithm:

e GETBASICBLOCKS(G)/GETINSTRUCTIONS(G) — Returns all basic blocks/instructions in G.

o WEAKTOPOLOGICALORDER(G) — Constructs a weak topological ordering of the basic blocks.

o GETPREDECESSORS(bb) — Get all predecessors for a basic block bb.

e 1sCycLEHEAD(bb) — Checks if a basic block bb is the head of a cycle (loop). When dealing
with cycles, one of the basic blocks inside the cycle is labeled as the representative block of
the cycle, or head.

o 1SENTRY(bD) — Checks if the basic block bb is the first (entry) basic block in G.

e UppATECYCLECOMPONENTS(bD, post, 3) — Given a head basic block bb, conditions post, and
proof certificates 3, calls ANALYZEBAsICBLOCK (to be given in Alg. 5) on all components

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

410:18 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

(basic blocks) inside a cycle), updates the post for all components and returns the updated
post and 3.

e GETLINENUMBER(inst) — Give the line number for a given instruction inst in G.

o GETREGISTERS(inst)/GETCELLS(inst) — Extract registers/memory cells used in the instruction
inst. Cells here consist of “region type/width/offset/region size” pairs (p, sz, n, size,).

o WIDEN(T, [};e,)/ WIDEN(A, Apey) — Handling loops can lead to excessive calls to the join proce-
dure without guaranteeing convergence. The widening procedure allows faster convergence
at the cost of precision, ensuring the termination of the analysis.

The type inference algorithm, given in Alg. 4, loops through the basic blocks of an EBPF program
and infers the types for all instructions. The input to the algorithm is a tuple (G, D), where G
is a control-flow graph for the program, and D is a context descriptor (as defined in Sec. 4.2).
The output is a set of type annotations X, which stores, for each instruction in the program, all
relevant variables (registers and memory cells) and their types. For registers, the type annotations
constitute “register/type” pairs (R, 7), and for memory cells, the annotations constitute “region
type/width/offset/region size/type” tuples (p, sz, n, size,,). Line 2 initializes the environments
using the descriptor . The computation of joins requires the type information after each basic
block; hence, at line 3, the algorithm constructs post to keep track of type environments and
memory environments, and populates it throughout.

The algorithm loops through the basic blocks in a weak topological order (line 4). If the basic
block bb is a cycle head (line 5), then initial environments are created by joining the environments
of predecessors of bb (line 6). However, the algorithm must ensure that T’ and A represent all
iterations of the cycle; hence, a fixed point must be reached. The loop (line 7) runs until a fixed
point is reached. At each iteration (lines 8-11), the algorithm constructs new environments (I};¢4,
and Apey) by analyzing the components of the cycle one iteration at a time, starting with I" and A,
and algorithm checks that I},.,, and A, reach a fixed point with I' and A (line 12). To conclude
that the fixed point is reached, the algorithm uses the subtyping relation, which induces a join
semi-lattice on the environments, which has a finite height. If the fixed point is not reached, the
algorithm widens I' and A with I}, and Ay to include newly-learned behaviors of the cycle
(line 15) to T and A.

If bb is not a cycle head (line 16), initial ' and A are constructed, either as Tj,;; and A;p;; if bb
is the entry block (line 18) or as a join of predecessors of bb otherwise (line 20). The algorithm
analyzes basic block bb, given initial T and A to get updated T', A, and certificates X (line 21). The
type annotations ¥ are returned once the algorithm finishes (line 23).

In the next two paragraphs, we describe how basic blocks are analyzed to update the environments
I', A, and type annotations ¥ in Alg. 5. The algorithm loops through each instruction inst in the
basic block (line 1) and applies rules enumerated in Sec. 5 (line 2). If the rule application heuristic
succeeds then we generate the new type/memory environments I'” and A" as well as the set of rules
r that were applied. If r is empty then none of the rules can be applied, and an error is reported to
the user (line 3), along with partially constructed type annotations. The annotations constructed so
far are important for the user to provide relevant information to be able to debug the program.

Whenever the algorithm successfully computes the updated I' and A, it also records the type
annotations for all relevant registers and memory cells used in the instruction inst (lines 6 and
7). Only the specific registers/memory cells accessed by the instruction will be shown to the user.
On line 8, the algorithm adds the relevant types to the proof certificate X. On line 9, it records
the set of rules that were applied to %, which is a global-scope mapping of instructions to sets of
rules. Finally, the algorithm returns the updated type/memory environments along with the proof
certification X.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:19

Algorithm 4: Type Inference

Input: an EBPF program’s control flow graph G, context descriptor D
Output: Type Annotations X C 7 X (VX T) X (RXNXNXNXT)
120
2 Linit, Ainit < init(D)
3 post « {bb : (Tempty, Aempty) | bb € GETBAsICBLOCKS(G) }
4 for bb € WEAKToPOLOGICALORDER(G) do
5 if 1sCycLeEHEAD(bD) then

6 I, A « W ([post(p) | p € GETPREDECESSORS(bb)])

7 while T do

8 I'’,A',Y « ANALYzEBAsiCBLock (bb,T, A, %)

9 post[bb] « (I, A)

10 post, % « UpDATECYCLECOMPONENTS(bb, post, %)
11 Thew Anew < W ([post(p) | p € GETPREDECESSORs(bD)])
12 if (Thew <:T) A (Apew <: A) then

13 break

14 else

15 I, A «— WIDEN(T, I}1evy), WIDEN(A, Apew)

16 else

17 if 1SENTRY(DD) then

18 I, A < Tinit, Ainit

19 else

20 I'A «— W ([post(p) | p € GETPREDECESSORs(bD)])
21 T, A, > « ANALYZEBASICBLOCK (b, T, A, X)

22 post[bb] « (T, A)

23 return X

Algorithm 5: Type annotations generation

To sum up, the inference algorithm
for one basic block (ANALYZEBASICBLOCK)

constructs an implicit derivation tree
by applying the typing rules at each in- Input: A basic block bb, type environment T,
struction. Once the types have been in- memory environment A, and type
ferred, a type-checking algorithm veri- annotations X

fies that the generated types are correct. ~ Output: A tuple (I”, A’, %)

Specifically, it verifies that the deriva- 1 for inst € bb do

tion tree is valid by checking that the 2 I, A’,r < AppLyRuLEs(inst,T, A)

inferred type can be constructed using 3 if r = 0 then

operand types by application of given 4 Report type error to user

typing rules. If this can be checked s return (I",A’, %)

for all instructions in the program, the ¢ R < GETRELEVANTREGISTERS(inst)
checker accepts the program; otherwise ; C « GETRELEVANTMEMORYCELLS(inst)
rejects it. In the context of EBPF pro- Slinst] — ((RT'(R)), (C,A'(C)))

grams, the checker c(;m re;lde inase BRlinst] — r
cure environment and verify programs

3 Y prog 10 return (I, A’,)
before execution.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

410:20 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

7 Implementation and Evaluation

We have implemented the type inference algorithm for our type system in the tool called VEREFINE.
VEREFINE takes as input an EBPF program in bytecode representation and runs an inference
algorithm for constructing types for each program instruction. VEREFINE prints the program in
the form of EBPF bytecode, with the type annotations with each instruction. If the program is
considered safe, this gives the user a chance to understand why the program is safe, by reading the
type annotations. When the program is considered unsafe, an error is reported to the user along
with the location of the error. The user may then debug the program, using type annotations, to
find the root cause.

VEREFINE uses Abstract Interpretation [15], a static analysis technique, to construct types [14]
environments to keep track of types for variables and memory regions. The core of our type
inference analysis relies on a reduced product of three abstract domains [16], namely region domain,
packet offset domain, and interval domain. The region domain precisely keeps track of the region to
which each pointer in the analysis belongs. Since stack and context regions store pointers, to track
the region for each pointer stored in stack and context cells, we also need to know the offset at
which those pointers are stored. Hence, the region domain also requires keeping track of offsets
for stack and context for precise region-tracking. For simplicity, we keep track of offsets for all
regions whose offsets are known at compile time, that is, all regions except packet. The packet offset
domain keeps track of offsets of the packet pointers and necessary packet-related constraints, by
using refinement types. Finally, the interval domain keeps track of numeric values using refinement
types and interval analysis. It is further reduced to signed interval domain and unsigned interval
domain, keeping track of signed and unsigned values for program variables. Details about the
interval analysis can be found in [22].

VEREFINE has been implemented as part of PREVAIL, reusing its parser, fixpoint algorithm, and its
interval domain. The implementation of VEREFINE is over 9000 lines of C++ code, excluding reused
code from PREVAIL. As stated before, we only support a type inference algorithm in VEREFINE,
while only a sketch of the type checking algorithm is given. A type checking algorithm can be
implemented in place in VEREFINE with minimal effort in the future. We also note that PREvAIL
injects safety checks on each relevant instruction, including operand types, as assertions in the
bytecode. VEREFINE then verifies these assertions while analyzing the bytecode. If any assertions
fail, an error is reported. Hence, limited support for checking has been implemented; however, a
standalone checker does not exist.

7.1 Experimental Results

We have evaluated VEREFINE against PREVAIL verifier, available at https://github.com/vbpf/prevail,
commit 16e@6cf. VEREFINE and PREVAIL both take the EBPF bytecode for the program. PREVAIL
checks whether the program is safe or not. Optionally, it also provides a list of pre-invariants
and post-invariants for each basic block in the program. VEREFINE, on the other hand, checks
the safety and provides type annotations for each instruction in the program.

We consider a list of 420 publicly available synthetic and industrial benchmarks in bytecode
representation’. The benchmarks considered in the evaluation have been collected from projects
including Linux, Cilium, OVS, Falco, Suricata, Prototype-Kernel, Beyla, and other publicly available
repositories.

The evaluation results are given in Table 1 with PREVAIL treated as the baseline tool. Hence, if
the output by VEREFINE matches the output by PREVAIL, we consider it correct. PREVAIL solves 401
benchmarks out of 420 benchmarks, while VEREFINE solves all 420. The 19 benchmarks that Pre-

1A publicly available subset of benchmarks comes from https://github.com/vbpf/ebpf-samples, commit 325cce1.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

https://github.com/vbpf/prevail
https://github.com/vbpf/ebpf-samples

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:21

Table 1. Comparison of VEREFINE and PREVAIL. Green numbers show the number of benchmarks considered
Safe, and red numbers show the number of benchmarks considered Unsafe.

‘ # benchmarks | # benchmarks | Unique benchs | Average | Maximum
solved verified verified time time
VEREFINE 420 406 (337/69) 15 0.06s 1.12s
‘ PrREVAIL 401 ‘ 401 (332/69) ‘ 10 ‘ 0.51s ‘ 14.59s ‘

vaIL does not solve, but VEREFINE does are VEREFINE
benchmarks that require reading variables A B A T
stored in a data section (i.e., platform vari- 10! £ A 4 R T
ables described in Sec. 3), which is a common - A':
feature of EBPF programs nowadays. PREVAIL - L “ . A :
does not support handling such reads at the . i ;A ° a)
time of evaluation, but VEREFINE does. Among E 10° a4 . E
the 401 benchmarks that PREVAIL solves (i.e., & B ‘ 1
gives a correct result, whether safe or unsafe, I 4 AA il
for), VEREFINE does so for 391 benchmarks. i ‘/‘ |
Fig. 9 gives the runtime comparison of the veri- 107 ¢ Lo £
fiers on these benchmarks. The 10 benchmarks F | | | .

that VEREFINE fails to verify are false positive 10-1 100 10!
results, while programs are safe. Out of the

unique 19 benchmarks VEREFINE supports, it Fig. 9. Comparison of time (in sec) of VEREFINE and
verifies 15 of them, all of which are verified to PrevaiL: Each benchmark has a point representing a
be safe. pair of running times. Runtimes lower than 0.1s are

The remaining 4 benchmarks out of 19 are rounded up to 0.1s.
considered unsafe by VEREFINE, and we report
them as “unknown” as we do not have a baseline to compare them. The table also reports the
number of benchmarks that are verified to be Safe/Unsafe for both tools, and the average and
maximum times for both tools on the set of common 401 benchmarks that both solved. Clearly,
VEREFINE is an order of magnitude faster than PREVAIL on such benchmarks.

We must state that PREVAIL is a mature industry-grade tool that can conduct a more detailed
analysis for EBPF programs. On the other hand, VEREFINE has a restricted and simpler analysis
defined by our type system. But it improves the performance and exhibits a more user-directed
behavior while matching the analysis of PREVAIL in most cases. Our evaluation demonstrates
that VEREFINE inference achieves significantly better runtime performance compared to PREVAIL.
However, the benefits of using VEREFINE not only lie in the better runtime performance but also in
the effectiveness of the type annotations, which we discuss in the next section.

7.2 Effectiveness of Type Annotations

We show the effectiveness of using type annotations provided by VEREFINE over previous techniques
that either provide no additional information when programs are rejected (for example, Linux
Kernel Verifier) or provide limited information at certain program points (for example, PREVAIL).
We showed an example in Sec. 2 explaining how the type annotations improve the debuggability of
EBPF programs. This subsection provides a more detailed discussion of PREVAIL’s output to that
program called pre-invariant and post-invariant, one of which is given in Fig. 10 (for basic block
bb2). In turn, Fig. 11 gives the debug information, manually extracted from such invariants but

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

410:22 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

1 Pre-Invariant: [

2 ro.type=number,

3 ri.svalue=s[468...471].svalue,
4

5 r1.uvalue=s[506...507].uvalue,
6

7 ré.map_fd=1, ré6.svalue=[1,

8 ré.type=map_fd, r6.uvalue=[1,
9

10

11 1]

12 Stack: Numbers -> {[468...495],

r1.svalue=s[506...507].svalue,

ri.type=number, r1.uvalue=s[468...471].uvalue,

r10.stack_offset=512, r10.svalue=[512, 21474181121, r10.type=stack,
21474181121, r6.svalue=r6.uvalue,
214741811217,
s[468...471].svalue=s[506...507].svalue, s[468...471]. type=number,
s[468...471].uvalue=s[506...507].uvalue, s[506...507].type=number

[506...5071}

Fig. 10. PREVAIL’s pre-invariant for basic block bb2 for example in Fig. 1.

1 r1 : stk[506], r2 : num(2), r3 : num,

2 ré : map;, r10 : stk[512]
bbo:
4 ro = probe_read(r1l, r2, r3);
goto bb1;
6 re : num, r6 : map,, r10 : stk[512],
7 stack[506-507] : num
9 re : num, ré6 : map;, r1@ : stk[512],
10 stack[506-507] : num
11 bb1:
12 rlt = *x(ul6 *)(r10 - 6);
13 *(u32 *x)(r10 - 44) = r1;
14 goto bb2;
15 rée : num, r1 : num, r6 : map,,
16 ri1e : stk[512], stack[506-507] : num,

17 stack[468-471] : num

29
30
31
32

ré : num, rl1 : num, r6 : map,,
r10 : stk[512], stack[506-507] : num,
stack[468-471] : num
bb2:
ri = x(u32 *x)(r1o - 44);
*(u32 *x)(r10 - 4) = ri;
r2 = rl1o;
r2 += -4;
ri = ré6;
roe = map_lookup_elem(rl, r2);
goto EXIT;

ro : num, r6 : map,, ri10
stack[506-507] : num,
stack[468-471] : num,
stack[508-511] : num

. stk[512],

Fig. 11. Example bytecode with (simplified) PREVAIL invariant from Fig. 1.

provided only at the beginning or end of a basic block. We use the same notation as the types in
our type system to provide concise information.

This also shows that the issue is not with the verbosity of the debug information (PREVAIL
invariants are hefty), as we could convert PREVAIL invariants to types and the debuggability is still
not improved?. However, since PREVAIL does not use slack variables, we omit them from the types

and provide generic types.

7.2.1 Debuggability. The error reported for map_lookup_elem is attributed to two possible scenar-
ios: (1) the type of map in r1 is wrong or map has not been constructed correctly, (2) the value at
the location pointed by r2 is not correct/sufficient. To debug the first scenario, the user might need
to trace back till the pre-invariant of bb2 to find the type of r6 and hence r1, and then further

?Recently, there has been an effort to make PREVATIL invariants simpler: https://github.com/vbpf/ebpf-verifier/pull/798.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

https://github.com/vbpf/ebpf-verifier/pull/798

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:23

debug whether the map is constructed correctly. To debug the second scenario, the user might
need to first find where r2 points to, which again requires tracing back to the pre-invariant. Once
the pointer is computed, the user has to figure out what is stored at location stack[508-5111],
which seems easier to find out from the post-invariant; however, generally, there might be many
instructions between the error location and the end of the block. Debugging in case of PREVAIL
requires multiple scans of the basic block. This effort gets amplified as finding the root cause of
the error might involve multiple blocks. Type annotations provided by VEREFINE require fewer
look-ups, as shown in Sec. 2.

7.2.2 Expressiveness of Type Annotations. We argue that the type annotations are expressive enough
to help understand the errors in the program for the user. When type annotations are provided, the
user does not need to understand the underlying type system to figure out any details. However,
the absence of the type annotations might demand a deeper understanding. Assume that the user
tries to understand line 4 in Fig. 11. The user reads about probe_read to know that it stores the
contents read to the location stack[506-507]. However, to understand what is being stored at
that location requires knowledge of the underlying type system. PREVAIL stores a number with no
known value when the analysis cannot infer an exact value. However, other analyses may handle
this differently. As a result, the user must understand the specifics of the analysis being performed,
which can be challenging. The type annotations are expressive enough to tell the user the required
information without requiring any underlying details.

8 Related Work

The most closely related EBPF verifier, PREVAIL [24], is based on the Zone abstract domain [36],
which results in an expensive analysis as it tracks all pairwise variable relations. Instead, VEREFINE
uses refinement types to only track relations that are needed to verify safety, which in most
cases are operations over packet pointers, e.g., pointer arithmetic and assume operations. Since
EBPF variables are mutable, the type inference algorithm provided by VEREFINE is flow-sensitive.
Furthermore, mutability might invalidate relations among program variables, which is addressed in
VEREFINE with immutable slack variables. Comparing with PREVAIL, our choice of a more specialized
abstraction allows faster verification while providing sufficient ability to verify for memory safety
with a few more false positives. A work-in-progress verifier for EBPF programs, EXOVERIFIER
[4], is based on both abstract interpretation and symbolic execution and supports the generation
and checking of proofs for memory safety. Symbolic execution is generally known to suffer from
the path explosion problem. With both settings, the tool is much slower in proof generation and
proof checking, and reports timeouts and errors. Linux verifier also explores all possible program
executions, and is known to report false positive results. VEREFINE avoids exploring all paths by
reconciling information at branch join points. The analysis based on the flow-sensitive refinement
type system is sufficient to avoid the pitfalls of the path explosion problem and avoids the complex
analysis by only keeping the required information. This results in simpler analysis and better
performance than state-of-the-art verifier PREVAIL. Another tool called bpfverify [9] considers
bit- and memory-precise verification of functional properties in EBPF programs, specified as pre-
conditions and post-conditions. The EBPF programs are modeled as Constrained Horn Clauses
(CHCs), which enables the use of external solvers such as [31]. bpfverify has only limited support
for kernel-helper functions, and does not support loops.

The work in [26] introduces flow-sensitive typing to scripting languages, which constructs static
typing of variables using runtime tags for JavaScript programs, although with limited support,
like typing for only non-recursive data types, intra-procedural analysis, and considering only
local effects. Many following works explore flow-typing in JavaScript, including FLow [11] and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

410:24 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

TypeScript [50], which attempt to improve the limitations in [26], such as providing a type inference
procedure and more non-local reasoning. VEREFINE differs from these approaches by targeting a
low-level language; thus VEREFINE supports low-level constructs such as pointers. The work in [40]
provides an algorithm for sound and complete flow-typing in the presence of unions, intersections,
and negations, and the work in [39] introduces a calculus for constraint-based flow-typing. The
work in [30] provides a framework for semantically sound flow-sensitive type systems, in the
context of secure information-flow in While programs. Inspired by previous work in flow-sensitivity,
the work in [41] presents a flow-sensitive type system for a statically-typed While language, giving
the language the feel of a dynamically-typed language. However, each of these works consider
languages with while-loops unlike VEREFINE. The flow-sensitive analysis has also been applied to
the functional programming paradigm in [35].

Refinement types were first introduced for ML [21]; however, this type system does not support
imperative constructs. Liquid types are similar to refinement types, which were introduced in
[43], and the paradigm was extended to low-level languages in [44]. SOLTYPE [48] uses a similar
framework for refinement types as VEREFINE, which utilizes a refinement type system to verify the
safety of arithmetic operations in Solidity smart contracts. SOLTYPE focuses on arithmetic properties
of contracts, considers any data containers immutable, and provides a flow-insensitive analysis.
VEREFINE supports reasoning about the contents of memory regions to check for information-
flow safety, which requires flow-sensitive reasoning. Refinement types have also been used for
verifying security properties of cryptographic protocols and access control mechanisms [7] and
for TypeScript [18, 51]. The work in [20] combines flow-sensitive analysis with refinement typing,
but restricts pointer aliasing to ease their analysis of strong updates. The work in [38] implements
a data flow refinement type inference algorithm for functional programs. Later approaches that
combine flow-sensitivity and refinement types include CONSORT [49] and [33]. CoNSORT applies
these concepts in imperative languages where mutability and aliasing are present. In [33], types
are refined using security labels, which are then used in the information-flow analysis. Unlike
VEREFINE, all these type systems analyze high-level languages. VEREFINE uses a construction we
call slack variables, which is a standard technique in numeric optimization [12] used to transform
an inequality constraint into an equality constraint. However, in our type system, these are used
differently and serve two purposes: 1) to encode interval/range types, and 2) to keep track of packet
pointer offsets. The latter usage is closest to the traditional usage of slack variables. Other type
systems [10] use a concept similar to ours, albeit for a very different purpose, namely, variables in
this type system encode discrete constraints over type constructors rather than continuous numeric
constraints. Compared to all of these works, VEREFINE does not develop a novel theory in the field
of refinement type systems; instead, it applies well-known techniques to a novel domain, namely,
EBPF verification.

Several type systems target low-level languages such as TALx86 [17], and more advanced type
systems have been developed for low-level languages such as LTLL [44], DTAL [52], and SPusH
[46]. The type system developed in [23] targets WebAssembly and uses the concept of indexed
types to replace dynamic runtime checks with static checks, thus improving the performance.
Unlike the aforementioned type systems, our type system provides types for pointers annotated
with a location in memory. The work in [32] uses flow-sensitive points-to analysis as a reachability
problem for value flow graphs. Value flow analysis reasons about what values the variables hold
at any point. Some other works, [28, 29, 53], use def-use chains in the flow-sensitivity setting to
restrict the unnecessary propagation of pointer information. For programs containing pointers in
general (e.g., C programs), such analysis can be expensive. VEREFINE uses type inference rules for
such information propagation and uses simpler def-use rules since EBPF uses well-defined memory

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:25

regions with restricted use of pointer operations, which contributes to efficient but also sufficient
implementation for checking memory safety.

Many works target memory safety for programs in languages other than EBPF. CHECKED C
[19, 45] is a framework for checking memory safety (specifically spatial safety, i.e., memory accesses
are within allowed bounds) of C programs. It enables backward compatibility and incremental
conversion with legacy C. It does not use refinement types. The CYCLONE tool [25] verifies C
programs for both spatial safety and temporal safety (i.e., pointers are not accessed after freeing)
using region-based memory management. It requires the user to explicitly write region annotations
(which region each pointer belongs to); however, this effort is reduced with the help of default
annotations and local type inference. VEREFINE infers sufficient annotations to check memory
safety automatically. Unlike CHECKED C and CYCLONE, but similar to VEREFINE, DEPUTY [13] uses
dependent types to incorporate bounds information to verify spatial safety. However, their type
system is flow-insensitive and requires adding runtime checks in the presence of flow-sensitivity.
However, a recent work [47] constructs a fully static dependent type system for verifying spatial
memory safety for low-level C programs.

9 Conclusion and Future Work

EBPF is an emerging technology that relies on the verification of programs to prove safety, before
programs can run inside a secure Linux or Windows kernel environment. Previous verifiers,
including the Linux EBPF Verifier and PrevaIL verifier (for Windows), have provided opportunities
to successfully verify EBPF programs, however, such verifiers cannot provide certificates about
failing or passing EBPF programs through the verifier, and help programmers understand the
root cause of verification failure. We eliminate such a lack of user-guidedness by providing type
annotations for EBPF programs being verified. We provide a robust tool based on a type inference
algorithm, called VEREFINE, that generates such annotations, giving programmers a chance to
understand the reasoning behind the cause of error, which supports better debugging for the user.
We successfully evaluated VEREFINE on 420 benchmarks, showing that it outperforms PREVAIL in
most of the benchmarks. We also provided a subjective study based on the benefits of using type
annotations for the debugging process, as compared to verification logs by PREVAIL.

For future work, we plan to support user annotations. User annotations are similar to type
annotations and allow users to specify properties about variables in the program at a given program
location. When an error is reported and the user identifies it as a false positive result, the user may
specify an annotation to guide the verifier to accept the program. To our knowledge, currently, EBPF
programmers go through a painful trial-and-error process to get a program verified, by changing
the high-level source code. User annotations further bridge the gap between the reporting of an
error and helping users fix that error. VEREFINE currently only supports memory safety properties,
similar to PREVAIL verifier. In the medium term, we plan to target EBPF for Windows that uses
PREVAIL as its verifier. Hence, the support for only memory safety properties is sufficient. In the
long term, we plan to support other properties, like termination and deadlock freedom for EBPF
programs. Currently, our support for verification of safety properties is on par with PREVAIL but lies
behind the Linux Verifier. As our work is motivated by the PCC infrastructure, a natural extension
of the work is to support a proof-checking algorithm for the types/proofs that resides inside the
secure environment of the Kernel.

Artifact Available. A virtual machine is available to reproduce the reported results [27].

Acknowledgements. This work was partially supported by the National Science Foundation grants
1816936 and 2106949.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

410:26 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

References
[1] [n.d.]. https://docs.kernel.org/bpf/verifier.html.
[2] [n.d.]. https://www.kernel.org/doc/html/v5.17/bpf/instruction-set.html.
[3] [n.d.]. https://www.ietf.org/archive/id/draft-ietf-bpf-isa-04.html#section-5.4.
[4] [n.d.]. https://github.com/uw-unsat/exoverifier/.
[5] John Phineas Banning. 1978. A method for determining the side effects of procedure calls. Ph.D. Dissertation. Stanford,

CA, USA. AAI7905815.

[6] John P. Banning. 1979. An efficient way to find the side effects of procedure calls and the aliases of variables. In
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (San Antonio, Texas)
(POPL °79). Association for Computing Machinery, New York, NY, USA, 29-41. doi:10.1145/567752.567756

[7] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. 2011. Refinement
types for secure implementations. ACM Trans. Program. Lang. Syst. 33, 2, Article 8 (Feb. 2011), 45 pages. doi:10.1145/
1890028.1890031

[8] Francois Bourdoncle. 1993. Efficient chaotic iteration strategies with widenings. In Formal Methods in Programming
and Their Applications, International Conference, Akademgorodok, Novosibirsk, Russia, June 28 - July 2, 1993, Proceedings
(Lecture Notes in Computer Science, Vol. 735), Dines Bjerner, Manfred Broy, and Igor V. Pottosin (Eds.). Springer, 128-141.
doi:10.1007/BFB0039704

[9] Martin Bromberger, Simon Schwarz, and Christoph Weidenbach. 2024. Automatic Bit- and Memory-Precise Verification
of eBPF Code. In Proceedings of 25th Conference on Logic for Programming, Artificial Intelligence and Reasoning
(EPiC Series in Computing, Vol. 100), Nikolaj Bjerner, Marijn Heule, and Andrei Voronkov (Eds.). EasyChair, 198-221.
doi:10.29007/sj41

[10] Robert Cartwright and Mike Fagan. 1991. Soft typing. In Proceedings of the ACM SIGPLAN 1991 Conference on
Programming Language Design and Implementation (Toronto, Ontario, Canada) (PLDI ’91). Association for Computing
Machinery, New York, NY, USA, 278-292. doi:10.1145/113445.113469

[11] Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. 2017. Fast and precise type
checking for JavaScript. Proc. ACM Program. Lang. 1, OOPSLA, Article 48 (Oct. 2017), 30 pages. doi:10.1145/3133872

[12] Vasek Chvatal. 1983. Linear Programming. W.H. Freeman. 14-15 pages. Print.

[13] Jeremy Condit, Matthew Harren, Zachary R. Anderson, David Gay, and George C. Necula. 2007. Dependent Types for
Low-Level Programming. In Programming Languages and Systems, 16th European Symposium on Programming, ESOP
2007, Held as Part of the Joint European Conferences on Theory and Practics of Software, ETAPS 2007, Braga, Portugal,
March 24 - April 1, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4421), Rocco De Nicola (Ed.). Springer,
520-535. doi:10.1007/978-3-540-71316-6_35

[14] Patrick Cousot. 1997. Types as Abstract Interpretations. In Conference Record of POPL’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Papers Presented at the Symposium, Paris, France, 15-17
January 1997, Peter Lee, Fritz Henglein, and Neil D. Jones (Eds.). ACM Press, 316-331. doi:10.1145/263699.263744

[15] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, Los Angeles, California, USA, January 1977, Robert M. Graham, Michael A.
Harrison, and Ravi Sethi (Eds.). ACM, 238-252. doi:10.1145/512950.512973

[16] Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis Frameworks. In Conference Record of
the Sixth Annual ACM Symposium on Principles of Programming Languages, San Antonio, Texas, USA, January 1979,
Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen (Eds.). ACM Press, 269-282. doi:10.1145/567752.567778

[17] K Crary, Neal Glew, Dan Grossman, Richard Samuels, F Smith, D Walker, S Weirich, and S Zdancewic. 1999. TALx86:
A realistic typed assembly language. In 1999 ACM SIGPLAN Workshop on Compiler Support for System Software Atlanta,
GA, USA. 25-35.

[18] Ivo Gabe de Wolff and Jurriaan Hage. 2017. Refining types using type guards in TypeScript. In Proceedings of the 2017
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (Paris, France) (PEPM 2017). Association for
Computing Machinery, New York, NY, USA, 111-122. doi:10.1145/3018882.3018887

[19] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi. 2018. Checked C: Making C Safe by
Extension. In 2018 IEEE Cybersecurity Development, SecDev 2018, Cambridge, MA, USA, September 30 - October 2, 2018.
IEEE Computer Society, 53-60. doi:10.1109/SECDEV.2018.00015

[20] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. 2002. Flow-Sensitive Type Qualifiers. In Proceedings of the 2002
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Berlin, Germany, June 17-19,
2002, Jens Knoop and Laurie J. Hendren (Eds.). ACM, 1-12. doi:10.1145/512529.512531

[21] Timothy S. Freeman and Frank Pfenning. 1991. Refinement Types for ML. In Proceedings of the ACM SIGPLAN’91
Conference on Programming Language Design and Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991,
David S. Wise (Ed.). ACM, 268-277. doi:10.1145/113445.113468

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

https://docs.kernel.org/bpf/verifier.html
https://www.kernel.org/doc/html/v5.17/bpf/instruction-set.html
https://www.ietf.org/archive/id/draft-ietf-bpf-isa-04.html#section-5.4
https://github.com/uw-unsat/exoverifier/
https://doi.org/10.1145/567752.567756
https://doi.org/10.1145/1890028.1890031
https://doi.org/10.1145/1890028.1890031
https://doi.org/10.1007/BFB0039704
https://doi.org/10.29007/sj4l
https://doi.org/10.1145/113445.113469
https://doi.org/10.1145/3133872
https://doi.org/10.1007/978-3-540-71316-6_35
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/3018882.3018887
https://doi.org/10.1109/SECDEV.2018.00015
https://doi.org/10.1145/512529.512531
https://doi.org/10.1145/113445.113468

A Flow-Sensitive Refinement Type System for Verifying eBPF Programs 410:27

[22]

[23]

[24]

[25]

[26

—

[27]

[28

—

[29

—

[30

[t

(31

—

[32

—

[33

[t

[34]

[35]

[36]

[37]

[38]

[39]

Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Sendergaard, and Peter J. Stuckey. 2014. Interval Analysis
and Machine Arithmetic: Why Signedness Ignorance Is Bliss. ACM Trans. Program. Lang. Syst. 37, 1 (2014), 1:1-1:35.
do0i:10.1145/2651360

Adam T. Geller, Justin Frank, and William J. Bowman. 2024. Indexed Types for a Statically Safe WebAssembly. Proc.
ACM Program. Lang. 8, POPL (2024), 2395-2424. doi:10.1145/3632922

Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska, Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk, and
Mooly Sagiv. 2019. Simple and precise static analysis of untrusted Linux kernel extensions. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June
22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 1069-1084. doi:10.1145/3314221.3314590

Dan Grossman, J. Gregory Morrisett, Trevor Jim, Michael W. Hicks, Yanling Wang, and James Cheney. 2002. Region-
Based Memory Management in Cyclone. In Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Berlin, Germany, June 17-19, 2002, Jens Knoop and Laurie J. Hendren (Eds.). ACM,
282-293. doi:10.1145/512529.512563

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2011. Typing Local Control and State Using Flow Analysis.
In Programming Languages and Systems - 20th European Symposium on Programming, ESOP 2011, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbriicken, Germany, March 26-April 3,
2011. Proceedings (Lecture Notes in Computer Science, Vol. 6602), Gilles Barthe (Ed.). Springer, 256-275. doi:10.1007/978-
3-642-19718-5_14

Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich. 2025. Artifact for the
OOPSLA’25 paper: A Flow-Sensitive Refinement Type System for Verifying eBPF Programs . doi:10.5281/zenodo.
15760800

Ben Hardekopf. 2009. Pointer Analysis: Building a Foundation for Effective Program Analysis. PhD thesis. University of
Texas at Austin, Austin, TX, USA.

Ben Hardekopf and Calvin Lin. 2009. Semi-sparse flow-sensitive pointer analysis. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Savannah, GA, USA) (POPL °09). Association
for Computing Machinery, New York, NY, USA, 226-238. doi:10.1145/1480881.1480911

Sebastian Hunt and David Sands. 2006. On flow-sensitive security types. In Conference Record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Charleston, South Carolina, USA) (POPL ’06).
Association for Computing Machinery, New York, NY, USA, 79-90. doi:10.1145/1111037.1111045

Hari Govind V. K., Grigory Fedyukovich, and Arie Gurfinkel. 2020. Word Level Property Directed Reachability. In
IEEE/ACM International Conference On Computer Aided Design, ICCAD 2020, San Diego, CA, USA, November 2-5, 2020.
IEEE, 107:1-107:9. doi:10.1145/3400302.3415708

Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the performance of flow-sensitive points-to analysis
using value flow. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering (Szeged, Hungary) (ESEC/FSE ’11). Association for Computing Machinery, New York, NY, USA,
343-353. doi:10.1145/2025113.2025160

Peixuan Li and Danfeng Zhang. 2017. Towards a Flow- and Path-Sensitive Information Flow Analysis. In 30th IEEE
Computer Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017. IEEE Computer
Society, 53-67. doi:10.1109/CSF.2017.17

Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Architecture for User-level Packet Capture.
In Proceedings of the Usenix Winter 1993 Technical Conference, San Diego, California, USA, January 1993. USENIX
Association, 259-270. https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-
architecture-user-level-packet

Jan Midtgaard. 2012. Control-flow analysis of functional programs. ACM Comput. Surv. 44, 3, Article 10 (June 2012),
33 pages. doi:10.1145/2187671.2187672

Antoine Miné. 2001. A New Numerical Abstract Domain Based on Difference-Bound Matrices. In Programs as Data
Objects, Second Symposium, PADO 2001, Aarhus, Denmark, May 21-23, 2001, Proceedings (Lecture Notes in Computer
Science, Vol. 2053), Olivier Danvy and Andrzej Filinski (Eds.). Springer, 155-172. doi:10.1007/3-540-44978-7_10
George C. Necula. 1997. Proof-Carrying Code. In Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Papers Presented at the Symposium, Paris, France, 15-17 January
1997, Peter Lee, Fritz Henglein, and Neil D. Jones (Eds.). ACM Press, 106-119. doi:10.1145/263699.263712

Zvonimir Pavlinovic, Yusen Su, and Thomas Wies. 2021. Data flow refinement type inference. Proc. ACM Program.
Lang. 5, POPL, Article 19 (Jan. 2021), 31 pages. doi:10.1145/3434300

David J. Pearce. 2013. A calculus for constraint-based flow typing. In Proceedings of the 15th Workshop on Formal
Techniques for Java-like Programs, FIfJP 2013, Montpellier, France, July 1, 2013, Werner Dietl (Ed.). ACM, 7:1-7:7.
do0i:10.1145/2489804.2489810

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

https://doi.org/10.1145/2651360
https://doi.org/10.1145/3632922
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/512529.512563
https://doi.org/10.1007/978-3-642-19718-5_14
https://doi.org/10.1007/978-3-642-19718-5_14
https://doi.org/10.5281/zenodo.15760800
https://doi.org/10.5281/zenodo.15760800
https://doi.org/10.1145/1480881.1480911
https://doi.org/10.1145/1111037.1111045
https://doi.org/10.1145/3400302.3415708
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1109/CSF.2017.17
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://doi.org/10.1145/2187671.2187672
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/3434300
https://doi.org/10.1145/2489804.2489810

410:28 Ameer Hamza, Lucas Zavalia, Arie Gurfinkel, Jorge A. Navas, and Grigory Fedyukovich

[40] David J. Pearce. 2013. Sound and Complete Flow Typing with Unions, Intersections and Negations. In Verification,

Model Checking, and Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013.

Proceedings (Lecture Notes in Computer Science, Vol. 7737), Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni

(Eds.). Springer, 335-354. doi:10.1007/978-3-642-35873-9_21

David J Pearce and James Noble. 2011. Structural and Flow-Sensitive Types for Whiley. (2011).

Liz Rice. 2023. Learning eBPF. O’Reilly Media.

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In Proceedings of the ACM SIGPLAN

2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta

and Saman P. Amarasinghe (Eds.). ACM, 159-169. doi:10.1145/1375581.1375602

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2010. Low-level liquid types. In Proceedings of the 37th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January 17-23,

2010, Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM, 131-144. doi:10.1145/1706299.1706316

Andrew Ruef, Leonidas Lampropoulos, Ian Sweet, David Tarditi, and Michael Hicks. 2019. Achieving Safety Incremen-

tally with Checked C. In Principles of Security and Trust - 8th International Conference, POST 2019, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,

Proceedings (Lecture Notes in Computer Science, Vol. 11426), Flemming Nielson and David Sands (Eds.). Springer, 76-98.

doi:10.1007/978-3-030-17138-4_4

[46] Ando Saabas and Tarmo Uustalu. 2006. Compositional Type Systems for Stack-Based Low-Level Languages. In Theory
of Computing 2006, Proceedings of the Twelfth Computing: The Australasian Theory Symposium (CATS2006). Hobart,
Tasmania, Australia, 16-19 January 2006, Proceedings (CRPIT, Vol. 51), Joachim Gudmundsson and C. Barry Jay (Eds.).
Australian Computer Society, 27-39. http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV51Saabas.html

[47] Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu. 2024. A Dependent Nominal Physical Type System for
Static Analysis of Memory in Low Level Code. Proc. ACM Program. Lang. 8, OOPSLAZ, Article 272 (Oct. 2024), 30 pages.
doi:10.1145/3689712

[48] Bryan Tan, Benjamin Mariano, Shuvendu K. Lahiri, Isil Dillig, and Yu Feng. 2022. SolType: refinement types for
arithmetic overflow in solidity. Proc. ACM Program. Lang. 6, POPL (2022), 1-29. doi:10.1145/3498665

[49] John Toman, Ren Sigi, Kohei Suenaga, Atsushi Igarashi, and Naoki Kobayashi. 2020. ConSORT: Context- and Flow-

Sensitive Ownership Refinement Types for Imperative Programs. In Programming Languages and Systems - 29th

European Symposium on Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075),

Peter Miiller (Ed.). Springer, 684-714. doi:10.1007/978-3-030-44914-8_25

Dan Vanderkam. 2024. Effective TypeScript: 83 Specific Ways to Improve Your TypeScript (2 ed.). O’Reilly Media.

Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. 2016. Refinement types for TypeScript. In Proceedings of the

37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI

’16). Association for Computing Machinery, New York, NY, USA, 310-325. doi:10.1145/2908080.2908110

Hongwei Xi and Robert Harper. 2001. A dependently typed assembly language. In Proceedings of the Sixth ACM

SIGPLAN International Conference on Functional Programming (Florence, Italy) (ICFP *01). Association for Computing

Machinery, New York, NY, USA, 169-180. doi:10.1145/507635.507657

Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing Zhang. 2010. Level by level: making flow- and

context-sensitive pointer analysis scalable for millions of lines of code. In Proceedings of the 8th Annual IEEE/ACM

International Symposium on Code Generation and Optimization (Toronto, Ontario, Canada) (CGO ’10). Association for

Computing Machinery, New York, NY, USA, 218-229. doi:10.1145/1772954.1772985

[41
[42
[43

—_

[44

[l

[45

—

[50
[51

—

(52

—

[53

[t

Received 2025-03-25; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 410. Publication date: October 2025.

https://doi.org/10.1007/978-3-642-35873-9_21
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1706299.1706316
https://doi.org/10.1007/978-3-030-17138-4_4
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV51Saabas.html
https://doi.org/10.1145/3689712
https://doi.org/10.1145/3498665
https://doi.org/10.1007/978-3-030-44914-8_25
https://doi.org/10.1145/2908080.2908110
https://doi.org/10.1145/507635.507657
https://doi.org/10.1145/1772954.1772985

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background on eBPF
	4 Programming Model
	4.1 Types
	4.2 Environments

	5 Type Rules
	5.1 Arithmetic, Control and Logic Instructions
	5.2 Region Safety and Information-Flow Safety
	5.3 Load and Store Operations
	5.4 Application of Rules
	5.5 Subtyping
	5.6 Soundness

	6 Type Inference And Type Checking
	6.1 Joins
	6.2 Type Inference

	7 Implementation and Evaluation
	7.1 Experimental Results
	7.2 Effectiveness of Type Annotations

	8 Related Work
	9 Conclusion and Future Work
	References

