
Verification of Solana Programs

Jorge A. Navas (Certora) and 
Arie Gurfinkel (University of Waterloo and Certora)

Venice, May 26th 2023

Symposium on Challenges of Software Verification (CSV)



DeFi in one slide

● Economic process completely
defined by code

● Fairly complex code
● Examples

■ Lending
■ Exchange
■ Options
■ Auctions

● 50 Billion dollars in the bear market



Interesting DeFi Bugs 2022/3

● Euler Finance $200M - DonateToReserves() function didn’t check for account debt health, 
allowing for bad debt to accrue and for the collateral to be liquidated at a large discount to the 
attacker

● Yearn Finance V1 $10M - Misconfiguration of one of the underlying asset addresses in the USDT 
pool allowed an attacker to drain the whole vault

● Safemoon $9M - Upgraded contract didn’t use access control for the burn() function. The 
attacker burned tokens from the Safemoon pool on a DEX, inflated the price and sold tokens into 
the pool

● Platypus $8.5M - EmergencyWithdraw() didn’t check for debt, so the attacker could take max 
loan for his collateral, and then simply emergency withdraw the collateral

● Hundred $7.4M - “First depositor” bug where the attacker could manipulate the exchange rate 
and borrow way more than allowed



Why Formally Verify DeFi?

❗ Code is law

💰 Billions of dollars at stake

Σ Code is typically medium-size/modular

🐛 But bugs are hard to find
Happens in rare scenarios

🔄 New code is produced frequently



The Certora Approach: Automatic Formal Verification

Unknown
Timeout

Specification

Code

Proofs that the 
spec holds 

A hard to find 
behavior which 
violates the 
invariants

Certora Prover



Critical Bugs Found by Certora Prover

Solvency
● If everybody runs to the bank 

Bank still fulfills all commitments

Bugs prevented by the Certora-Prover missed in manual audits by top auditors

 
● Users’ money cannot

be locked or lost

$807M $6.5B $2.7B $1.18B

Strategy 2 V3 1 Comet 5 V2 2

Trident 5 V2 2 V2 5

KashiPair 3

DutchAuction 1

“We thank all contributors who made this release possible.
Special thanks goes to @johnadtoman of @CertoraInc for
reporting the inline assembly memory side effects bug!”

Solidity
@solidity_lang



Why Formally Verify Solana (https://solana.com) ? EVM

https://coinmarketcap.com/chain-ranking

Non-EVM

https://solana.com/


Why Formally Verify Solana? 
● Benefits:

○ Based on general purpose programming languages:  Rust, C/C++
○ Reusing existing eBPF virtual machine: 

■ Support multiple (or even combination of) input languages
○ Programs are stateless: all data is passed as function arguments

■ Non-interference (easier to shard)
 

● Challenges:
○ Verification of low-level eBPF/SBF is harder
○ No common format between apps (data format is up to the app):

■ Inputs are just array of bytes
■ Serialization/deserialization

○ Compiled Rust can be harder to verify than human-written C
■ Rust union types, dangling pointers, etc.

 



Solana Programming (not in this talk)

● Accounts 
○ Fields: lamports,  owner, executable, data, rent epoch
○ Program and Data accounts

● Transactions consist of instructions

● All programs are stateless: any data they interact with is stored in separate accounts that are 
passed in via instructions

● PDAs (Program Derived Address):  data account owned by programs instead of users
○ Used to implement associative maps

● CPI (Cross Program Invocations)
● Deserialize/Serialize 

 

https://solanacookbook.com/



Certora Prover Architecture for Solana 

REPORT.SPEC

VC generatorCompiler SMT Solver Analyzer

Correctness preserving transformations

SPEC

.SMT2 BUG

REPORT

1:  Trust but Verify 
2: Abstract Interpretation

Recover types
Memory analysis

.rs

.SBF

RUST

LLVM

.bc

llvm-sbf

rustc

clang

.cpp

C++

Decompiler

.TAC

In this talk

 eBPF



eBPF/SBF Virtual Machine

Blockchain State (program inputs)

Stack (byte-addressable) Heap (byte-addressable)
0x300000000

…

r0

r1

r2

r3

r10

Registers

0x200000000

Text (code + rodata)
0x100000000

0x400000000

0 1 1 0 0 1 1 0 1 1 0 0 1…



eBPF/SBF Virtual Machine

#accounts

8

…dup_info

8
8

pa
dd

in
g

is_signer

is_w
ritable

is_exe

key owner lamports

8
data
length

8

data epoch

8

Account 

MAX_PERMITTED_DATA_ARG

(Deserialized) Blockchain State

Stack (byte-addressable) Heap (byte-addressable)
0x300000000

…

r0

r1

r2

r3

r10

Registers

data
length data

8

program
id

32 32 32

0x200000000

pa
dd

in
g

Text (code + rodata)
0x100000000

0x400000000



SBF Instruction Set

● Currently, three different dialects with similar bytecodes: bpf/sbf/sbfv2
● RISC-like instruction set
● 11 general-purpose, 64-bit registers

○ r10 is read-only frame pointer to access to stack
● ALU, JUMP, LOAD, STORE, MOVE

○ Jumps use only relative constant offsets: CFG construction is decidable
● Syscalls and eBPF-to-eBPF (internal) calls

○ r0: return
○ r1, ..., r5: caller-saved (volatile) registers
○ r6, ..., r9: callee-saved (non-volatile) registers

● No type information: no distinction between numbers and pointers
● Direct and indirect function calls: call graph construction is undecidable



SBF Disassembler 

1. Translate ELF to a sequence of three-address instructions
○ Resolve Solana-specific relocations

2. CFG and Call graph construction: one per function
○ Indirect calls not supported

3. Inline all internal functions
○ Explicit modeling of call semantics

4. Compute Cone-of-Influence and slice program
5. Memory analysis
6. Translation to TAC program



Memory Analysis Assumptions

  The analysis is sound under the following assumptions:

1. Memory safety
○ Absence of out-of-bounds accesses
○ Stack/Heap/Blockchain memory is initialized 

2. First read from blockchain state returns non-deterministic values
○ Pointers do not alias with any other pointer 

3. Each memory read accesses the same number of bytes last written
○ Checked by the analysis



Rust compiles to large programs 

● Many irrelevant paths:
● error paths
● free pointers

● We only care about paths that 
can influence the evaluation of 
assertions

assert

rust_dealloc
assert

Solution: dataflow analysis that 
removes any path that is not in the 
Cone-Of-Influence (CoI)



Rust enum types

Result<(),ProgramError>

Result<&mut V, ProgramError>

question mark (?) operator



Rust enum types



Rust enum types
Err(3)

Err(1)

Ok(_)

r1 is the 
discriminant
 0 = Ok
  1  = Err

● We need to discriminate error 
from ok paths

● Path-sensitive analysis is 
expensive and it is not easy to 
identify the discriminants



Rust enum types
Err(3)

Err(1)

Ok(_)

assume(r1==0)

We typically prove properties 
under the assumption that 
functions return ok

Solution: iterative 
forward+backward analysis
(Cousot&Cousot JLP’92/ASE’99) 
to prune error paths



Analysis of SBF code  

● Disassembler needs to translate SBF into a TAC program without side effects
○ TAC memory operations have an explicit argument “mem” that represents the (possibly 

infinite) set of memory locations being accessed 
○ Two TAC memory ops do not alias if they have different “mem” names 

● How: static memory partitioning
■ Split all program memory (stack, heap, and inputs) into a finite set of disjoint 

regions
■ For each memory instruction,  map the memory location to a region 

● Challenges:
○ No explicit allocation sites for program inputs because they are allocated either before 

the SBF program is loaded or by deserialization
○ Strong vs weak updates



Analysis of SBF code  

○ Solution 1: flow-insensitive/field-sensitive pointer analysis (Gurfinkel&Navas SAS’17)
■ Adopted in LLVM-based verifiers such as SeaHorn and SMACK
■ Easy to model in SMT:  one single points-to graph for the whole program

4040 409640483976 3984

Stack r10

0 8

16 24

2416

0 0

0

0 0

0source

destination

3760

r7



Analysis of SBF code  

4040 409640483976 3984

Stack

r7

r10

0 8

16 24

2416

0 0

0

0 0

0source

destination

● Registers must be tracked flow-sensitively
○ They can be re-assigned at each instruction



Analysis of SBF code  

4040 409640483976

Stack

r7

r10

0 8

16 24

2416

0 0

0

0 0

source/destination

● LLVM back-end reuses stack allocations       
    lifetime.start.p0i8(%p1)
    call try_borrow_mut_lamports(%p1) // %p1 points to src 
    lifetime.end.p0i8(%p1)
    lifetime.start.p0i8(%p2)
    call try_borrow_mut_lamports(%p2) // %p2 points to dst 
    lifetime.end.p0i8(%p2)

● Same slot 3976 in SBF for %p1 and %p2

● Stack must be tracked flow-sensitively

● Registers must be tracked flow-sensitively
○ They can be re-assigned at each instruction



Analysis of SBF code  

● Solution 2: flow-sensitive pointer analysis
■ Solution adopted by verifiers such as Predator
■ Very precise but expensive: one points-to graph per basic block
■ Harder to model in SMT: a memory instruction can use different “mem” depending 

on which predecessor reaches the instruction



Analysis of SBF code

● Our solution:
○ Flow-sensitive stack and registers
○ Flow-insensitive heap and program inputs 
○ Stack scalarization:

■ Each stack slot is translated to a scalar variable
■ This allows strong updates on local variables
■ Precise and easy to model in SMT

○ Weak updates on heap and program inputs
■ Still easy to model in SMT



Conclusions 

● Solidity/EVM has attracted most of the attention of the verification community

● Verification of Solana contracts is a very exciting new research area

● Based on thrilling Rust and eBPF technology
○ A lot of the ideas and solutions can be reused in different contexts

● Both (compiled) Rust and SBF pose unique challenges to verification
● Certora is building the first automatic verifier for Solana contracts!



 Many challenges are still to solve …
● Solana

a. Cross-program invocations (CPI)
b. Automatic handling of serialization/deserialization
c. Verifying multiple transactions/instructions

■ For now, we focus on one instruction at the time, and manually provide context invariants
■ However, most exploited vulnerabilities used multiple instructions and transactions

d. Fuller model of transaction state
■ e.g., support instruction introspection (heavily used for implementing confidentiality)

e. Richer model of the blockchain environment: e.g., PDA-based links between accounts

 
● Rust/SBF

a. More precise memory abstraction to support Rust enum types
b. More precise abstractions for the heap (e.g., Box, Vec, …)

● SMT
a. Improve domain-specific treatment of non-linear arithmetic


