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DeFi in one slide

● Economic process completely
defined by code

● Fairly complex code
● Examples

■ Lending
■ Exchange
■ Options
■ Auctions

● 50 Billion dollars in the bear market



Interesting DeFi Bugs 2022/3

● Euler Finance $200M - DonateToReserves() function didn’t check for account debt health, 
allowing for bad debt to accrue and for the collateral to be liquidated at a large discount to the 
attacker

● Yearn Finance V1 $10M - Misconfiguration of one of the underlying asset addresses in the USDT 
pool allowed an attacker to drain the whole vault

● Safemoon $9M - Upgraded contract didn’t use access control for the burn() function. The 
attacker burned tokens from the Safemoon pool on a DEX, inflated the price and sold tokens into 
the pool

● Platypus $8.5M - EmergencyWithdraw() didn’t check for debt, so the attacker could take max 
loan for his collateral, and then simply emergency withdraw the collateral

● Hundred $7.4M - “First depositor” bug where the attacker could manipulate the exchange rate 
and borrow way more than allowed



Why Formally Verify DeFi?

❗ Code is law

💰 Billions of dollars at stake

Σ Code is typically medium-size/modular

🐛 But bugs are hard to find
Happens in rare scenarios

🔄 New code is produced frequently



The Certora Approach: Automatic Formal Verification
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Critical Bugs Found by Certora Prover

Solvency
● If everybody runs to the bank 

Bank still fulfills all commitments

Bugs prevented by the Certora-Prover missed in manual audits by top auditors

 
● Users’ money cannot

be locked or lost

$807M $6.5B $2.7B $1.18B

Strategy 2 V3 1 Comet 5 V2 2

Trident 5 V2 2 V2 5

KashiPair 3

DutchAuction 1

“We thank all contributors who made this release possible.
Special thanks goes to @johnadtoman of @CertoraInc for
reporting the inline assembly memory side effects bug!”

Solidity
@solidity_lang



Why Formally Verify Solana (https://solana.com) ? EVM

https://coinmarketcap.com/chain-ranking

Non-EVM

https://solana.com/


Why Formally Verify Solana? 
● Benefits:

○ Based on general purpose programming languages:  Rust, C/C++
○ Reusing existing eBPF virtual machine: 

■ Support multiple (or even combination of) input languages
○ Programs are stateless: all data is passed as function arguments

■ Non-interference (easier to shard)
 

● Challenges:
○ Verification of low-level eBPF/SBF is harder
○ No common format between apps (data format is up to the app):

■ Inputs are just array of bytes
■ Serialization/deserialization

○ Compiled Rust can be harder to verify than human-written C
■ Rust union types, dangling pointers, etc.

 



Solana Programming (not in this talk)

● Accounts 
○ Fields: lamports,  owner, executable, data, rent epoch
○ Program and Data accounts

● Transactions consist of instructions

● All programs are stateless: any data they interact with is stored in separate accounts that are 
passed in via instructions

● PDAs (Program Derived Address):  data account owned by programs instead of users
○ Used to implement associative maps

● CPI (Cross Program Invocations)
● Deserialize/Serialize 

 

https://solanacookbook.com/



Certora Prover Architecture for Solana 
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eBPF/SBF Virtual Machine
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eBPF/SBF Virtual Machine
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SBF Instruction Set

● Currently, three different dialects with similar bytecodes: bpf/sbf/sbfv2
● RISC-like instruction set
● 11 general-purpose, 64-bit registers

○ r10 is read-only frame pointer to access to stack
● ALU, JUMP, LOAD, STORE, MOVE

○ Jumps use only relative constant offsets: CFG construction is decidable
● Syscalls and eBPF-to-eBPF (internal) calls

○ r0: return
○ r1, ..., r5: caller-saved (volatile) registers
○ r6, ..., r9: callee-saved (non-volatile) registers

● No type information: no distinction between numbers and pointers
● Direct and indirect function calls: call graph construction is undecidable



SBF Disassembler 

1. Translate ELF to a sequence of three-address instructions
○ Resolve Solana-specific relocations

2. CFG and Call graph construction: one per function
○ Indirect calls not supported

3. Inline all internal functions
○ Explicit modeling of call semantics

4. Compute Cone-of-Influence and slice program
5. Memory analysis
6. Translation to TAC program



Memory Analysis Assumptions

  The analysis is sound under the following assumptions:

1. Memory safety
○ Absence of out-of-bounds accesses
○ Stack/Heap/Blockchain memory is initialized 

2. First read from blockchain state returns non-deterministic values
○ Pointers do not alias with any other pointer 

3. Each memory read accesses the same number of bytes last written
○ Checked by the analysis



Rust compiles to large programs 

● Many irrelevant paths:
● error paths
● free pointers

● We only care about paths that 
can influence the evaluation of 
assertions

assert

rust_dealloc
assert

Solution: dataflow analysis that 
removes any path that is not in the 
Cone-Of-Influence (CoI)



Rust enum types

Result<(),ProgramError>

Result<&mut V, ProgramError>

question mark (?) operator



Rust enum types



Rust enum types
Err(3)

Err(1)

Ok(_)

r1 is the 
discriminant
 0 = Ok
  1  = Err

● We need to discriminate error 
from ok paths

● Path-sensitive analysis is 
expensive and it is not easy to 
identify the discriminants



Rust enum types
Err(3)

Err(1)

Ok(_)

assume(r1==0)

We typically prove properties 
under the assumption that 
functions return ok

Solution: iterative 
forward+backward analysis
(Cousot&Cousot JLP’92/ASE’99) 
to prune error paths



Analysis of SBF code  

● Disassembler needs to translate SBF into a TAC program without side effects
○ TAC memory operations have an explicit argument “mem” that represents the (possibly 

infinite) set of memory locations being accessed 
○ Two TAC memory ops do not alias if they have different “mem” names 

● How: static memory partitioning
■ Split all program memory (stack, heap, and inputs) into a finite set of disjoint 

regions
■ For each memory instruction,  map the memory location to a region 

● Challenges:
○ No explicit allocation sites for program inputs because they are allocated either before 

the SBF program is loaded or by deserialization
○ Strong vs weak updates



Analysis of SBF code  

○ Solution 1: flow-insensitive/field-sensitive pointer analysis (Gurfinkel&Navas SAS’17)
■ Adopted in LLVM-based verifiers such as SeaHorn and SMACK
■ Easy to model in SMT:  one single points-to graph for the whole program
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Analysis of SBF code  
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● Registers must be tracked flow-sensitively
○ They can be re-assigned at each instruction



Analysis of SBF code  
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● LLVM back-end reuses stack allocations       
    lifetime.start.p0i8(%p1)
    call try_borrow_mut_lamports(%p1) // %p1 points to src 
    lifetime.end.p0i8(%p1)
    lifetime.start.p0i8(%p2)
    call try_borrow_mut_lamports(%p2) // %p2 points to dst 
    lifetime.end.p0i8(%p2)

● Same slot 3976 in SBF for %p1 and %p2

● Stack must be tracked flow-sensitively

● Registers must be tracked flow-sensitively
○ They can be re-assigned at each instruction



Analysis of SBF code  

● Solution 2: flow-sensitive pointer analysis
■ Solution adopted by verifiers such as Predator
■ Very precise but expensive: one points-to graph per basic block
■ Harder to model in SMT: a memory instruction can use different “mem” depending 

on which predecessor reaches the instruction



Analysis of SBF code

● Our solution:
○ Flow-sensitive stack and registers
○ Flow-insensitive heap and program inputs 
○ Stack scalarization:

■ Each stack slot is translated to a scalar variable
■ This allows strong updates on local variables
■ Precise and easy to model in SMT

○ Weak updates on heap and program inputs
■ Still easy to model in SMT



Conclusions 

● Solidity/EVM has attracted most of the attention of the verification community

● Verification of Solana contracts is a very exciting new research area

● Based on thrilling Rust and eBPF technology
○ A lot of the ideas and solutions can be reused in different contexts

● Both (compiled) Rust and SBF pose unique challenges to verification
● Certora is building the first automatic verifier for Solana contracts!



 Many challenges are still to solve …
● Solana

a. Cross-program invocations (CPI)
b. Automatic handling of serialization/deserialization
c. Verifying multiple transactions/instructions

■ For now, we focus on one instruction at the time, and manually provide context invariants
■ However, most exploited vulnerabilities used multiple instructions and transactions

d. Fuller model of transaction state
■ e.g., support instruction introspection (heavily used for implementing confidentiality)

e. Richer model of the blockchain environment: e.g., PDA-based links between accounts

 
● Rust/SBF

a. More precise memory abstraction to support Rust enum types
b. More precise abstractions for the heap (e.g., Box, Vec, …)

● SMT
a. Improve domain-specific treatment of non-linear arithmetic


